

Question	Answer	Mark s	AO	G	uidance
		A1	1.1	Obtain correct derivative on LHS	Condone missing or incorrect RHS
					Must now have $\frac{dy}{dx}$ and not just dy or dx
	$6x^2 + 6y + 6x - 6y = 0$	M1	3.1 a	Use $\frac{dy}{dx} = 1$ in their equation	in terms Must now be equation, but RHS could be incorrect (eg '= 2')
	$x^2 + x = 0$	B1	1.1a	Solve correct quadratic in x to	B0 if x 'cancelled' in quadratic to give x
	x = 0, x = -1			obtain two correct roots (possibly BC)	= -1 as only root, but M1A1 still available
				Quadratic must come from correct implicit differentiation	
	$x = 0$ gives $3y^2 = -2$, but y^2 has to be ≥ 0 , so no solutions	B1	2.3	Explicitly reject $x = 0$, with reasoning	eg negative numbers cannot be square rooted or $y^2 \neq -\frac{2}{3}$ 2 as y is real
				$x = 0$ must come from $x^2 + x = 0$	(just $y^2 \neq -\frac{2}{3}$ is insufficient)
					Must be sensible reason and not just 'math error' or 'not possible' Could say that there are only imaginary (or not real) roots – condone 'complex' roots
	$x = -1$ gives $3y^2 + 6y + 4 = 0$	M1	2.1	Attempt to determine the number	From substituting their <i>x</i> value into the
	$b^2 - 4ac = 36 - 48 = -12$			of real roots of their 3 term quadratic in y	equation of the curve Consider discriminant, or use quadratic formula, or attempt minimum value of function
	-12 < 0 hence no (real) roots	A1	2.4	Obtain correct discriminant from correct quadratic and conclude appropriately $x = -1$ must come from $x^2 + x = 0$	If using quadratic formula then it must be fully correct and attention drawn to why there are no real roots
		[8]			