9		$dx = 2\cos\theta d\theta$	M1	1.1a	Attempt to link dx and d θ	Allow sign error only
		$\int \sqrt{4-r^2} dr = \int \sqrt{4-4\sin^2\theta} 2\cos\theta d\theta$	M1	3.1 a	Attempt to write integrand in	Must substitute for both function and dx
		$\int \sqrt{4} - x dx = \int \sqrt{4} - 4 \sin \theta dx = 0$			terms of θ	Can follow M0 but do not allow just dx
						$= \mathrm{d}\theta$
		$-\int \sqrt{4\cos^2\theta} 2\cos\theta d\theta$	A1	1.1	Obtain correct integrand in terms	Condone no $d\theta$, as long as previously
		-] 14005 0.2005000			of $\cos\theta$ only	seen
		$= \int 4\cos^2\theta d\theta$				
		$= \int (2\cos 2\theta + 2) d\theta$	M1	2.1	Attempt use of double angle	Using $\cos 2\theta = \pm 2\cos^2 \theta \pm 1$
		J			formula	Integrand must be of form $k \cos^2 \theta$,
						which must have come from correct
						method with coefficient errors only
		$=\sin 2\theta + 2\theta$	A1FT	1.1	Integrate to obtain $\sin 2\theta + 2\theta$	FT on $a\cos 2\theta + b$ only
		$[\sin 2\theta + 2\theta]^{\frac{1}{3}\pi} = (\sin^2 \pi + 2\pi) - (\sin^2 \pi + 2\pi)$	M1	2.1	Attempt use of limits	Must be correct limits (either x or θ , as
		$\begin{bmatrix} 2m 20 + 20 \end{bmatrix}_{\frac{1}{6}\pi} (2m 3 + 3 + 3) (2m 6 + 6 + 6)$				long as consistent with their integral),
		$=\left(\frac{1}{2}\sqrt{3}+\frac{2}{2}\pi\right)-\left(\frac{1}{2}\sqrt{3}+\frac{1}{2}\pi\right)$				correct order and subtraction
						Allow M1 for use of limits in any
						integration attempt in terms of θ Allow
						M1 for either expressions that still
						involve sin, or exact equivs
						M0 for decimal values, even if then
						stated to be the same as $\frac{1}{3}\pi$
						Condone eg $\frac{1}{2}\sqrt{3}$ from sin120°, but
						M0 if degrees used in linear term
		$=\frac{1}{3}\pi$ A.G.	A1	2.1	Obtain given answer of $\frac{1}{3}\pi$	Must see both surd values, or an
		-				explanation as to why $\sin \frac{2}{3}\pi = \sin \frac{2}{6}\pi$
			[7]			5 0
			L' J	I		