	Question	Answer	Mark s	AO	Guidance
--	----------	--------	-----------	----	----------

11	(a)	$\int e^{3y} dy$	$=\int 3x^2 \ln x dx$	M1	3.1 a	Separate variables and attempt	Allow ke^{3y} , with $k \neq 1$, as 'attempt' at
		J>	J .			integration of at least one side	integration of LHS
							'Attempt' at RHS may not be use of
							integration by parts
							Allow BOD on missing integral sign /
							missing dy / missing dx as long as
		5 3 × 1	1 3 v	P1	11	Correct LHS	R0 if still part of an expression also
		Je ³ dy	$=\frac{1}{3}e^{3}$		1.1		involving x
		$\int 3x^2 \ln x$	$xdx = x^3 \ln x - \int x^2 dx$	M1	3.1 a	Attempt integration by parts on RHS – must have correct parts	As far as attempt at $x^3 \ln x - \int x^2 dx$,
							possibly with $\int \frac{1}{x} x^3 dx$ not yet
							simplified
			$= x^3 \ln x - \frac{1}{3}x^3 + c$	A1	1.1	Correct RHS (condone no $+ c$)	Condone no modulus sign on $\ln x$
		$\frac{1}{3}e^{3} = e^{3}$	$^{3}\ln e - \frac{1}{3}e^{3} + c$ so $c = -\frac{1}{3}e^{3}$	M1	1.1 a	Attempt use of $(e, 1)$ to find c	Used in an equation involving x , y and
		5	5				<i>c</i> , following some integration attempt of
							both sides
							As far as finding c , either exact or as a decimal
							M1 can be implied by sight of $-\frac{1}{3}e^3$ or
							-6.695 following a correct equation
		$\frac{1}{3}e^{3y} = 3$	$x^{3}\ln x - \frac{1}{3}x^{3} - \frac{1}{3}e^{3}$	A1	1.1	Obtain correct equation, in	Any equivalent form on the RHS, but
		3^{3y}	x ³ Im x x x ³ x ³			required form	must be $e^{3y} = \dots$
		$e^{y} = 3x$	x m x - x - e				A0 if decimal approximation for e^3

Question		on	Answer	Mark s	AO	Guidance	
				[6]			
11	(b)		$e^{3y} = 3e^{6}lne^{2} - e^{6} - e^{3}$ = $6e^{6} - e^{6} - e^{3}$ = $5e^{6} - e^{3}$	M1*	2.1	Substitute $x = e^2$, into their integral involving lnx, and attempt to simplify	lnx may be $\ln x^p$ if any coefficient has been taken into the ln term As far as correctly simplifying the ln term to remove ln Must be working exactly, so M0 if decimals seen before ln dealt with
			$3y = \ln(e^{3}(5e^{3} - 1))$ = 3 + ln(5e^{3} - 1)	M1 dep*	2.1	Introduce logs correctly, and attempt to rearrange to given form	Their equation must have two terms, or possibly more, with the terms having a common factor of e^k Attempt must go as far as splitting into the sum of two terms, with lne^k simplified to k
			$y = 1 + \frac{1}{3}\ln(5e^3 - 1)$	A1 [3]	2.1	Obtain $y = 1 + \frac{1}{3}\ln(5e^3 - 1)$	No need to state a, b and c explicitly