Question		n	Answer	Mark	AO	Guidance	
				S			
12	(a)		dx - 1 dy - 2	M1	1.1a	Attempt correct process to find	Correctly combine attempts at two
			$\frac{1}{\mathrm{d}t} = \frac{1}{t^2}, \ \frac{1}{\mathrm{d}t} = 2$			gradient in terms of t or p	derivatives
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}x}}$				Need $\frac{dx}{dt} = kt^{-2}$ and $\frac{dy}{dt} = 2$
			$dx = \frac{1}{dt}$				SC B1 for gradient of $-2x^{-2}$ if it is never
							seen in terms of <i>t</i> or <i>p</i>
			$\frac{\mathrm{d}y}{\mathrm{d}x} = -2t^2$	A1	2.1	Obtain correct gradient	In terms of t or p
			$y - 2p = -2p^2\left(x - \frac{1}{p}\right)$	M1	1.1a	Attempt equation of tangent	Condone still working in terms of <i>t</i> Allow mixture of <i>t</i> and <i>p</i> as long as convincingly recovered Using their gradient from a
				41	2 1	Obtain given answer	differentiation attempt, but not dependent on first M1 Substitution into $y - y_1 = m(x - x_1)$ or equation involving <i>c</i> from $y = mx + c$ Must now be in terms of n
			$y = -2p^2 x + 4p \text{A.G.}$	AI	2.1	Obtain given answer	Expand brackets and simplify to given answer, or find c and substitute back into equation
				[4]			

Question		n	Answer	Mark s	AO	Guidance	
12	(b)		$m' = \frac{1}{2p^2}$	B1FT	1.1 a	Correct (unsimplified) gradient	Gradient in terms of t or p , but not x
			- r			of normal, following their	Could either FT on their incorrect
						derivative	derivative or deduce the gradient from
							the equation given in (a)
			$y - 2p = \frac{1}{2} \left(x - \frac{1}{n} \right)$	M1	1.1	Attempt equation of normal	Attempt to use their gradient and P
			$y = \frac{1}{2n^2} x + 2p - \frac{1}{2n^3}$				Allow mixture of <i>t</i> and <i>p</i> as long as convincingly recovered
			2p $2p$				Substitution into $y - y_1 = m(x - x_1)$ or equation involving <i>c</i> from $y = mx + c$
				M1	3.1a	Use $y = 0$ to attempt x-coordinate	Using their attempt at normal equation
						of B	As far as finding an expression for x
			at B, $y = 0$ so $x = 2p^2 \left(\frac{1}{2p^3} - 2p\right) = \frac{1}{p} - 4p^3$	A1	2.1	Correct <i>x</i> -coordinate for <i>B</i>	Any equivalent form
			at A, $y = 0$ so $x = \frac{4p}{2p^2} = \frac{2}{p}$	B 1	2.1	Correct <i>x</i> -coordinate for <i>A</i>	Any equivalent form
			$PA = \sqrt{\left(\frac{1}{p}\right)^2 + \left(2p\right)^2}$	M1	3.1 a	Attempt length of <i>PA</i> or <i>PB</i>	Or M1 for attempting one of $(PA)^2$ or $(PB)^2$
			$\sqrt{(-2)^2 - 2}$				Must correct distance formula
			$PB = \sqrt{\left(4p^3\right)^2 + \left(2p\right)^2}$				Using the given <i>P</i> , and their coordinates
							for A and/or B, which must involve a
							function of p
				A1	2.1	Correct PA and PB	Or correct $(PA)^2$ and $(PB)^2$
			$PA: PB = \frac{1}{\sqrt{4p^4+1}} : 2p\sqrt{4p^4+1}$	A1	2.1	Simplify ratio to obtain given	Must show clear method, such as same
						answer	expression in each square root before
			$=\frac{1}{p}:2p$				cancelling
			$= 1 : 2p^2$ A.G.				Could also consider fraction and then
							cancel to deduce given ratio
							Could simplify $(PA)^2 : (PB)^2$, and then
				[0]			square root to obtain ratio
				[ð]			