Question			Answer	Marks	AO	Guidance	
1	(a)		$BC^2 = 6^2 + 15^2 - 2 \times 6 \times 15 \times \cos 30^\circ$	M1	1.1a	Attempt use of cosine rule	Allow either omission of 2, or + not –, but no other errors Allow other fully complete methods, such as basic trigonometry, possibly combined with Pythagoras
			BC = 10.3 cm	A1 [2]	1.1	Obtain 10.3cm, or better	If > 3sf then allow 10.25, or answers that round to 10.25 Condone no units
1	(b)		$\frac{\sin 30}{4} = \frac{\sin D}{6}$	M1	1.1	Attempt use of sine rule	Correct equation seen, with fractions either way up Could also be implied by method eg sin ⁻¹ (0.75) is M1 , but just 0.75 is M0 Allow other fully complete methods
			$D = 48.6^{\circ}$	A1	1.1	Obtain $D = 48.6^{\circ}$, or better	D = 48.590377 Allow $D = 0.848$ radians
			or $D = 131^{\circ}$	A1FT	3.1a	Obtain $D = 131^{\circ}$, or better FT their first angle as long as $<150^{\circ}$	D = 131.409622 A0 if additional angles given as well Allow $D = 2.29$ radians (could be FT on incorrect acute angle in radians, as long as $D < 2.618$)
				[3]			