Question		Answer	Marks	AO	Guidance	
4	(a)	$AB = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$	B1	1.1	Correct length aef	Condone 4.47 or better Allow isw eg $\sqrt{20} = 4\sqrt{5}$ Allow BOD on signs eg $AB = -2\mathbf{i} - 4\mathbf{j}$ seen
			[1]			
4	(b)	$(p-3)^2 + (p-5)^2 = 20$	M1	1.1 a	Attempt correct equation for length <i>BC</i>	Using their attempt at length of <i>AB</i> Condone error on RHS eg having $\sqrt{20}$ not 20
		$p^2 - 8p + 7 = 0$ p = 7	A1	1.1	BC Solve correct quadratic to obtain at least $p = 7$	If second value of p stated then it must be correct
		<i>C</i> is 7 i + 7 j	A1	1.1	Correct position vector for <i>C</i> ; it could be given as column vector, but not coordinate	No need to discard $p = 1$
			[3]			If M0 , question is 'determine' so some evidence needed for full marks – either justifying lengths are equal, or use of components of 2 and 4 $7\mathbf{i} + 7\mathbf{j}$ with some explanation B3 $7\mathbf{i} + 7\mathbf{j}$ with no explanation B2 (7, 7) with some explanation B2 (7, 7) with no explanation B1

Question		Answer	Marks	AO	Guidance		
4	(c)	OM is $4\mathbf{i} + 4\mathbf{j}$ OR	B1	1.1	Correct midpoint soi	Allow <i>M</i> seen as coordinate, as it is part of their method and not a	
		<i>BM</i> is i – j			Could instead find vector BM	requested answer Condone $M = 4\mathbf{i} + 4\mathbf{j}$, but penalise clear error eg $AM = 4\mathbf{i} + 4\mathbf{j}$ is B0 Could be soi on a diagram	
		<i>D</i> is 6 i + 2 j	B1	1.1	Correct position vector (not coordinate) for <i>D</i>	Do not penalise <i>D</i> given as coordinate if already penalised in part (b)	
			[2]			Answer only is B0B1	
4	(d)	Kite	B1 *	2.2a	Mark independently of reason		
			B1dep *	2.2a	Evidence is required to support statements made	All relevant evidence quoted must be correct	
		eg two pairs of adjacent sides of same length			$AD = CD = \sqrt{26}$ (or compare components of vectors); condone not stating $AB = BC$ as given in question	Sides must be defined as adjacent, so B0 for just 'two pairs of equal sides', but allow BOD if clarified on an explicit diagram seen in part (d)	
		eg diagonals are perpendicular			AC has gradient of 1, BD has gradient of -1	If using a geometrical argument, then identify that ABC is isosceles, M is mid-point of AC hence perpendicular bisector	
		eg <i>BD</i> being a line of symmetry			AM = MC, with perpendicular argument as above		
					B0 for reasoning using angles (ie a pair of facing equal angles) unless justified.		
			[2]				