Question		Answer	Marks	AO	Guidance	
6	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x+3)\mathrm{e}^{x^2+3x}$	M1	1.1a	Attempt to differentiate using the chain rule	Obtain derivative of form $f(x)e^{x^2+3x}$ Could also split into two terms and use product rule to obtain derivative of form $f(x)e^{x^2}e^{3x} + ke^{x^2}e^{3x}$ ($k \neq 0$) M0 if attempt to split results in sum not product
		$(2x+3)e^{x^2+3x}$	A1	1.1	Obtain correct derivative	Brackets must be seen, or implied by later work aef eg $(2xe^{x^2})(e^{3x}) + (e^{x^2})(3e^{3x})$ from splitting into two terms first Could be in terms of <i>u</i> , as long as <i>u</i> clearly defined
		$(2x+3)e^{x^2+3x} = 0$ 2x+3=0 $x=-\frac{3}{2}$	A1	1.1	Equate correct derivative to 0 soi and solve to obtain $x = -\frac{3}{2}$	ISW any <i>y</i> -coordinates if given A0 if any additional solutions for <i>x</i> Must see differentiation, so $x = -\frac{3}{2}$ with no supporting method gets no credit (as question is 'determine')

Question		Answer	Marks	AO	Guidance		
		$e^{x^2+3x} > 0$ for all x or $e^{x^2+3x} \neq 0$ or $x^2 + 3x = \ln 0$, but this is not possible	B1FT	2.4	Indicate no solutions from the exponential term	FT their derivative as long as of form $f(x)e^{x^2+3x}$ or $f(x)e^u$ Allow BOD for explanations such as $e^x > 0$ for all x Must have some reason, eg ' e^{x^2+3x} is always positive', ' e^{x^2+3x} cannot be negative', 'cannot take ln of a negative number', 'not defined', 'not real', 'no solutions' A0 for 'math error' or 'doesn't work'	
			[4]				
6	(a)	Alternative method $lny = x^{2} + 3x$ $\frac{1}{y} \frac{dy}{dx} = 2x + 3$	M1		Take ln and attempt implicit differentiation	Must deal correctly with lny	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = y\left(2x+3\right)$	A1		Obtain correct derivative	May still have $\frac{1}{y}$ on LHS	
		$2x + 3 = 0$ $x = -\frac{3}{2}$	A1		Equate correct derivative to 0 soi and solve to obtain $x = -\frac{3}{2}$		
		$e^{x^2 + 3x} \neq 0$	B1		Indicate no solutions from the exponential term	See main MS for guidance Could also explain why no solutions from $\frac{1}{y}$	

6 (b)
$$\frac{d^2 y}{dx^2} = 2e^{x^2 + 3x} + (2x+3)^2 e^{x^2 + 3x}$$

$$\frac{M1}{dx^2} = (2 + (2x+3)^2)e^{x^2 + 3x}$$

$$\frac{d^2 y}{dx^2} = (2 + (2x+3)^2)e^{x^2 + 3x}$$

$$\frac{M1}{dx^2} = (2 + (2x+3)^2)e^{x^2 + 3x}$$

Question		Answer	Marks	AO	Guidance	
		$(2x+3)^2 \ge 0$ hence $2 + (2x+3)^2 > 0$	M1	3.1a	Explain why correct quadratic is always positive	Could note minimum value of 2 as completed square form Could use expanded quadratic, which should be $4x^2 + 12x + 11$ If showing no real roots then must also say that it is a positive quadratic Condone > / \ge muddles for M1 only Could show that there are no points of inflection and $\frac{d^2 y}{dx^2} > 0$ for at least one point
		$e^{g(x)} > 0$ for all <i>x</i> ; quadratic > 0 for all <i>x</i> hence curve is always convex	A1 [5]	2.4	Full and convincing proof to show that curve is convex for all <i>x</i>	WWW
6	(b)	Alt method for first 2 marks				
		$\frac{dy}{dx} = y(2x+3)$ $\frac{d^2 y}{dx^2} = 2y + (2x+3)\frac{dy}{dx}$	M1		Attempt second derivative, using implicit differentiation and the product rule	If still $\frac{1}{y} \frac{dy}{dx} = 2x + 3$ then must be a correct attempt to differentiate the LHS
			A1		Obtain correct derivative	aef
		Then B1 M1 A1 as above			Will need to use $\frac{dy}{dx} = y(2x+3)$ to make further progress	