Question		Answer	Marks	AO	Guidance		
7	(a)	$\cos(A - B) = \cos A \cos(-B) - \sin A \sin(-B)$	M1	2.1	Replace <i>B</i> with – <i>B</i> in given identity		
		cos(-B) = cosB, $sin(-B) = -sinB$, cos(A - B) = cosAcosB - sinA(-sinB) cos(A - B) = cosAcosB + sinAsinB A.G.	A1	2.4	State $cos(-B) = cosB$ and sin(-B) = -sinB, and conclude with correct identity Condone $-sinAsin(-B)$ becoming sinAsinB with no intermediate step	cos(-B) = cosB, $sin(-B) = -sinBmust be stated, but no justificationneeded$	
			[2]				

Question		Answer	Marks	AO	Guidance	
7	(b)	$\left(\frac{\sqrt{3}}{2}\cos\theta - \frac{1}{2}\sin\theta\right)\left(\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta\right)$	B1	2.1	Use correct identities, with exact trig values, to obtain a correct expression	Allow BOD for ambiguous positioning of + and – signs in a product, but penalise explicit errors if a single identity is seen in isolation If expansion done before exact trig values used, then the expression must still be correct at the point that the B1 is awarded
		$\frac{3}{4}\cos^2\theta - \frac{1}{4}\sin^2\theta$	M1	2.1	Expand brackets May be recognised as difference of two squares so no need to see $\frac{\sqrt{3}}{4}\cos\theta\sin\theta - \frac{\sqrt{3}}{4}\cos\theta\sin\theta$	To obtain answer of form $a\cos^2\theta - b\sin^2\theta$ ($a > 0, b > 0$), with possibly $c\cos\theta\sin\theta - c\cos\theta\sin\theta$ also present
		$\frac{\frac{3}{4}\cos^2\theta - \frac{1}{4}\left(1 - \cos^2\theta\right)}{\cos^2\theta - \frac{1}{4}}$ A.G.	A1	2.1	Use Pythagorean identity and simplify to given answer	www eg if middle terms shown for expansion, then these must be correct
			[3]			

7	(c)	(i)	max value is $\frac{3}{4}$	B1	1.1	Correct max value	
			when θ is 180°	B 1	1.1	Correct angle	B0 if any extra angles given Must be 'positive' so B0 for 0° Must be in degrees
				[2]			Marks are independent
7	(c)	(ii)	min value is $-\frac{1}{4}$	B1	1.1	Correct min value	

Question		Answer	Marks	AO	Guidance	
		when θ is 90°	B1	1.1	Correct angle	B0 if any extra angles given Must be in degrees SC If angles in both parts are correct, but in radians, then penalise only once (mark as B0 in (i) and B1 in (ii))
			[2]			Marks are independent