Question		Answer	Marks	AO	Guidance		
10	(a)	Both f(0) and f(1) are positive so no sign change will be seen	B1 [1]	2.3	Identify both y-values being positive and state 'no sign change' or equiv	Could also evaluate $f(0)$ as 1 and $f(1)$ as 2.9 (or better), and refer to no sign change – these are both positive so no need to include > 0 Could also refer to the asymptote / discontinuity within this range ($x = 0$ to $x = 1$) Also allow 'graph is not continuous in this interval' B0 for no reference to interval Could say that the two points chosen are not on the same part of the curve	
10	(b)	$\frac{e^{x}}{4x^{2}-1} = -2$ $e^{x} = -8x^{2} + 2$ $8x^{2} = 2 - e^{x}$ $16x^{2} = 4 - 2e^{x}$ $4x = \sqrt{4 - 2e^{x}}$ $x = \frac{1}{4}\sqrt{(4 - 2e^{x})}$ A.G.	M1 A1	1.1	Attempt rearrangement, as far as $kx^2 =$ Obtain given answer convincingly	Allow sign error(s) only If $x = \sqrt{\frac{1}{4} - \frac{1}{8}e^x}$ then an additional line of working needed before given answer (eg show common denominator of 16)	

10	(c)	$x_2 = 0.285074813$	B1	1.1	Correct first iterate (at least 4sf)	State 0.2851 or better
		0.28943, 0.28817, 0.28853, 0.28843, 0.28846, 0.28845	M1	1.1	Correct iterative process (at least 3 more values)	Allow M1 for 3sf – expect 0.289, 0.288 and then 0.288 or 0.289 depending whether truncating or rounding
		$\alpha = 0.2885$	A1	1.1	Correct root, given to 4sf, following 2 iterates that agree to 4sf	ie at least 7 iterations needed, given to at least 4sf $\mathbf{A0}$ for eg $x_8 = 0.2885$ (implies 8^{th} iterate and not root) Process self corrects so $\mathbf{B0M1A1}$ possible; or $\mathbf{B1M1A1}$ if error in term other than x_2
			[3]			
10	(d)	$F'(x) = \frac{-16x}{2 - 8x^2}$	M1	1.1a	Attempt differentiation using the chain rule	Obtain derivative of form $\frac{kx}{2-8x^2}$ Condone subscripts still present in derivative
		F'(0.3) = -3.75	M1	1.1	Attempt F'(0.3) – not dependent on previous M1 , but must follow some attempt at differentiation	M1 can be implied by correct -3.75 (from correct derivative), but explicit substitution must be seen if $F'(x)$ is incorrect Must come from differentiating $F(x)$ and not a different function

Question	Answer	Marks	AO	Guidance		
	For convergence $ F'(\alpha) < 1$, but $-3.75 < -1$, so iteration will not find root	A1 [3]	2.5	Correct reasoning, following correct F'(0.3)	Allow $F'(\alpha) < -1$, hence will not converge Condone $F'(x)$ not $F'(\alpha)$ No credit for just testing the given iterative formula	