Question		Answer	Marks	AO	Guidance		
11	(a)	$\log_{10}S = \log_{10}(ab^t)$ $\log_{10}S = \log_{10}a + \log_{10}b^t$	M1	3.3	Attempt to show reduction to linear form	Introduce logs on both sides, and correctly split to the sum of two terms	
		$\log_{10}S = t\log_{10}b + \log_{10}a$	A1	3.3	Obtain correct equation	Condone no base; any bases seen must be 10 A0 for $\log_{10}bt$ unless previously seen as $t\log_{10}b$	
		which is of the form $Y = mX + c$	A1	3.3	Link to equation of straight line	Could instead refer to linear relationship	
			[3]			If M0 then allow SC B1 for statement such as <i>S</i> against <i>t</i> is an exponential function so log <i>S</i> against <i>t</i> will give a straight line	
11	(a)	Alternative method					
		$log_{10}S = mt + c$ $S = 10^{mt + c}$	M1		Attempt equation of straight line, and attempt expression for <i>S</i>	Must be using log ₁₀ S against <i>t</i> Must use base of 10	
		$S=10^{mt}\times 10^{c}$	A1		Correctly split into two terms		
		which is of the form $S = ab^t$	A1		Link to exponential model		

11	(b)	$m = \log_{10}b = 0.06$ so $b = 10^{0.06} = 1.15$	B1	2.1	Link gradient of line of best fit to linear form and confirm $b \approx 1.15$ Allow <i>m</i> in range [0.055, 0.065]	Or $log_{10}1.15 = 0.06$ and compare to gradient
		$c = \log_{10}a = 2.08$ so $a = 10^{2.08} = 120$	B1	2.1	Link intercept of line of best fit to linear form and confirm $a \approx 120$ Allow <i>c</i> in range [2.075, 2.085]	Or $log_{10}120 = 2.08$ and compare to intercept
			[2]			 Plotted points are linear so may not see line of best fit drawn If substituting into formula (either given model or linear reduction) then B1 for finding and verifying any point that would be on the line of best fit B1 for finding and verifying a second point
11	(c)	$S = 120 \times 1.15^7$	M1	3.4	Substitute $t = 7$ into given model	soi
		predicted sales are 319 items	A1	3.4	Conclude with integer value	Accept 320 items
			[2]			

11	(d)	(i)	GP with <i>a</i> = 138 and <i>r</i> = 1.15	B1	3.1b	State or imply sum of GP with <i>a</i> as 120 or 138, and <i>r</i> as 1.15	Could be implied by attempt to use GP sum formula (but not just n^{th} term) – allow slip as long as clearly sum being considered
			$\frac{138(1-1.15^t)}{1-1.15} = 70000$	M1*	3.1b	Attempt sum of GP, with $a = 120$ or 138 and $r = 1.15$, related to 70000	Must be correct sum formula May have <i>n</i> not <i>t</i> throughout Allow $r = 1.15^{t+1}$ with $a = 120$ but this is B1 M1 only, as not a valid method)
			$1.15^t = 77.087$	M1 dep*	1.1	Attempt to rearrange equation as far as $1.15^t =$	Must now have <i>a</i> = 138 (or equiv) Allow sign errors only Allow T&I as not DR
			<i>t</i> = 31.088 hence 32 months	A1	3.2a	Obtain 32 ('months not required')	www If 32 given as answer only then allow full marks; if any method shown then mark using the main scheme
				[4]			Allow BOD with any inequality signs

Question			Answer	Marks	AO	Guidance	
11	(d)	(ii)	Unlikely to be reliable as sales may not continue in same pattern as market could become saturated	B1	3.2b	State or imply that the model is unlikely to be valid, with a sensible reason why – could refer to reason why pattern may not continue or extrapolation not being reliable	Decrease in demand Increase in competition No values beyond $t = 6$ so pattern unknown Reason why sales are likely to level off / plateau or unlikely to continue to increase ('other factors' not enough) Item sales may vary according to season