Question		Answer	Marks	AO	Guidance	
6	(a)	DR $f\left(\frac{1}{4}\right) = 4\left(\frac{1}{4}\right)^3 - 25\left(\frac{1}{4}\right)^2 - 58\left(\frac{1}{4}\right) + 16$ $= \frac{1}{16} - \frac{25}{16} - \frac{29}{2} + 16 = 0$	B1	2.1	Show $f(\frac{1}{4}) = 0$, some detail required	B0 for just $f(0.25) = 0$, but condone seeing either just the substitution or just the evaluated terms Could use division by $(4x - 1)$ or $(x - \frac{1}{4})$ but must identify remainder of 0
6	(b)	$DR (4x-1)(x^2-6x-16)$	B1 M1	2.2a 1.1	Identify factor of $(4x - 1)$ Obtain complete division by $(4x - 1)$ or $(1 - 4x)$ Obtain correct product	Allow factor of $(x - \frac{1}{4})$ Must be a complete method ie attempt all 3 terms to obtain x^2 and one other correct term (allow one slip in method) Could be implied by $A = 1$ and one other correct if using coefficient matching Condone division by $(x - \frac{1}{4})$, to obtain $4x^2$ and either $-24x$ or -64 Integer coefficients now required Must be written as a product , so cannot be implied by eg correct quotient appearing following division by $(4x - 1)$ but the two factors never combined Could be $(1 - 4x)(-x^2 + 6x + 16)$

Question		Answer	Marks	AO	Guidance		
			[3]			If division was used in part (a) then quotient must appear in part (b), but evidence for B1M1 could be in (a) If $(x - 8)(x + 2)$ seen before the quadratic factor then both roots must be justified (eg factor theorem), otherwise M0 (but could still get B1)	
6	(c)	DR $(4e^{y} - 1)(e^{y} - 8)(e^{y} + 2)$ $e^{y} = \frac{1}{4}, e^{y} = 8, e^{y} = -2$ $y = \ln \frac{1}{4}, y = \ln 8$ $y = -2\ln 2, y = 3\ln 2$	M1	3.1a 1.1	Attempt to find <i>y</i> from at least one positive root for e ^y Obtain at least one correct solution in the required form	Attempt to link e^y to the root(s) of the cubic in x , and then solve $e^y = k$ to obtain $y = \ln k$, where k is one of their positive roots $y = -2\ln 2$ comes from the given root, but $y = 3\ln 2$ must come from the correct solution of the correct quadratic	
			A1	1.1	Obtain both correct solutions in required form	Must come from the correct solution of the correct quadratic Allow BOD if ln(– 2) also seen	
		$e^y = -2$ has no solutions as $e^y > 0$ for all y	B1 [4]	2.3	Reject $e^y = -2$ with a reason	Must have some reason, eg 'e' is always positive', 'e' cannot be negative', 'cannot take log of a negative number', 'not defined', 'not real', 'no solutions' B0 for 'math error', 'does not work', 'not possible', N/A etc e' = -2 must come from the correct solution of the correct quadratic	

.

.