Question		Answer	Marks	AO	Guidance		
10		DR					
		$r(2x + 3) = x + 9$; $r(x + 9) = 2x - 6$; $r^{2}(2x + 3) = 2x - 6$	B 1	3.1a	Obtain any correct equation in terms of r and x	Could be implied by later work May use other than <i>r</i>	
		$\frac{x+9}{2x+3} = \frac{2x-6}{x+9}$ oe	M1*	3.1a	Attempt equation in terms of only <i>x</i>	This equation would imply the B1 Or correct equation in terms of only <i>r</i>	
		$x^{2} + 18x + 81 = 4x^{2} - 12x + 6x - 18$ $3x^{2} - 24x - 99 = 0$	A1	1.1	Obtain any correct equation not involving fractions or brackets	May still have like terms not yet combined May result in a cubic depending on method (probably $6x^3 - 39x^2 - 270x - 297 = 0$)	
		(x-11)(x+3) = 0 x = 11, x = -3	A1	2.1	Solve quadratic BC to obtain both correct <i>x</i> values	Or solve cubic, to obtain three correct roots (third is likely to be $x = -1.5$)	
		$r=\frac{4}{5}$, $r=-2$	A1	1.1	Obtain at least $r = \frac{4}{5}$	If second value of <i>r</i> given then it must be correct (if third value given then it must be consistent with their correct cubic roots)	
		$S_{\infty} = \frac{a}{1 - r} = \frac{25}{1 - \frac{4}{5}}$	M1d*	3.2a	Attempt sum to infinity, using correct formula, with their <i>r</i> and their attempt at <i>a</i>	Must be using their numerical values for a and r with $ r < 1$ ISW using additional value(s) of r M0 if using their x and not attempt at a	
		$S_{\infty} = 125$	A1	1.1	Obtain 125 only	A0 if additional solution	

Question		Answer	Marks	AO	Guidance	
		S_{∞} only exists for $ r < 1$, so $r = -2$ is not a valid solution	B1	2.5	Clear explanation as to why $r = -2$ is discarded	Must be considering correct r value, so B0 if rejecting $x = -3$ as $\begin{vmatrix} -3 \end{vmatrix} > 1$ Could generate the terms -3 , 6, (-12) and hence conclude with 'divergent sequence' If additional solutions for x and/or r from cubic then they must also be correct and explicitly rejected
			[8]			NB Eliminating x not r is a valid method, and could gain full credit. When solving their quadratic there is no need to see $r = -2$ (and hence $x = -3$) to award the A marks

......

. ._