Question		Answer	Marks	AO	Guidance			
12	(a)	DR $area = \int x \frac{dy}{dt} dt$ $\frac{dy}{dt} = 4t + 3$ hence $\int \frac{2}{(2t+1)^4} (4t+3) dt$	M1	1.2	Attempt $\int x \frac{dy}{dt} dt$ in terms of t , detail required	Clear indication that integrand is given by $\int x \frac{dy}{dt} dt \text{ (condone just } \int x \frac{dy}{dt} \text{), along with }$ $\frac{dy}{dt} = 4t + 3 \text{ and full substitution into }$ integrand Condone no dt in integrand in initial statement and/or when substituting May instead see integrand as $\int x dy$ with $dy = (4t + 3)dt$		
		$\int \frac{8t+6}{\left(2t+1\right)^4} dt \mathbf{A.G.}$	A1	2.1	Obtain correct given integrand	dt required throughout		
		a = 0, from $t = 0$ oe	B1	2.2a	Determine correct lower limit from solving equation	Evidence for $a = 0$ required eg $2t^2 + 3t = 0$ a = 0 doesn't need to be seen explicitly, and could be implied by 0 appearing as the lower limit on an integral sign once sufficient evidence seen Mark independently of any integrand attempted		
		$2t^2 + 3t = 2$	M1	2.1	Equate expression for y to 2	Could be implied by $t = \frac{1}{2}$ seen as a limit		
		(2t-1)(t+2) = 0 $t = \frac{1}{2} t = -2$ but $t > 0$, so $b = \frac{1}{2}$	A1	2.1	Obtain $b = \frac{1}{2}$ as upper limit www	No need for $t = -2$ to be explicitly rejected $b = \frac{1}{2}$ doesn't need to be seen, and may be implied by appearing as the upper limit on an integral sign Mark independently of any integrand attempted		

THE TOTAL							Odilo Zoz i	
Question			Answer	Marks	AO	Guidance		
				[5]				
12	(b		DR					
			u = 2t + 1, $du = 2dt$, $8t + 6 = 4u + 2$	M1*	3.1a	Use $u = 2t + 1$ to attempt to change entire integrand to a function of u	Attempt to write numerator, denominator and dt in terms of u	
			$\int \frac{4t+3}{(2t+1)^4} 2dt = \int \frac{2u+1}{u^4} du$ $\int \frac{2}{u^3} + \frac{1}{u^4} du = -\frac{1}{u^2} - \frac{1}{3u^3}$	A1	1.1	Obtain correct integrand	Condone no du	
			$\int \frac{2}{u^3} + \frac{1}{u^4} du = -\frac{1}{u^2} - \frac{1}{3u^3}$	M1*	3.1a	Attempt integration to obtain integral of form $au^{-2} + bu^{-3}$	M0 if additional terms	
				A1	1.1	Obtain fully correct integral		
			$\left[-\frac{1}{u^2} - \frac{1}{3u^3} \right]_1^2 = \left(-\frac{1}{4} - \frac{1}{24} \right) - \left(-1 - \frac{1}{3} \right)$	M1d*	3.1a	Attempt use of correct limits: either correct t limits (ie $a = 0$ and $b = \frac{1}{2}$) in a t - integral or commensurate upper and lower limits in an integral involving a substitution (eg with $u = 2t + 1$, then upper limit must be 2 and lower limit must be 1)	Dependent on M1 M1 Minimum evidence needed is two terms ie $\left(-\frac{7}{24}\right) - \left(-\frac{4}{3}\right) \text{ or } \left(\frac{3}{4}\right) + \left(\frac{7}{24}\right)$ If these values are not seen then M1 can be awarded for term by term substitution seen (ie 4 terms needed), but allow one error	
			$=\frac{25}{24}$	A1	1.1	Obtain correct area, any exact equivalent	Explicit use of limits must be seen in a correct integral for A1	

Question		Answer	Marks	AO	Guidance			
			[6]			Candidates may mix and match methods eg start with substitution and then try to do the actual integration by parts – the MS allows M1A1 for changing the integrand to useable form; M1A1 for doing the integration; M1A1 for use of limits		
		Alternative method (integration by parts)						
		u = 8t + 6, u' = 8 $v' = (2t+1)^{-4}, v = -\frac{1}{6}(2t+1)^{-3}$ I =	M1*		Attempt integration by parts	Correct parts and correct formula		
		$-\frac{1}{6}(8t+6)(2t+1)^{-3} - \int -\frac{8}{6}(2t+1)^{-3} dt$						
			A1		Obtain correct first step	Allow unsimplified		
		I = $(8t+6) \times -\frac{1}{6} (2t+1)^{-3} + \frac{8}{6} \times -\frac{1}{4} (2t+1)^{-2}$	M1*		Attempt integration to obtain integral of form $a(8t+6)(2t+1)^{-3} + b(2t+1)^{-2}$			
			A1	1	Obtain fully correct integral	Allow unsimplified		
		$\left(-\frac{5}{24} - (-1)\right) + \left(-\frac{1}{12} - \left(-\frac{1}{3}\right)\right)$	M1d*		Attempt use of correct limits	See guidance in main MS		
		$= \left(\frac{19}{24}\right) + \left(\frac{1}{4}\right)$						
		$=\frac{25}{24}$	A1		Obtain correct area, any exact equivalent			

0 4							
Quest	ion	Answer	Marks	AO	Guidance		
		Alternative method (separate fractions)					
		$\frac{4(2t+1)+2}{(2t+1)^4} = \frac{4}{(2t+1)^3} + \frac{2}{(2t+1)^4}$ $\int \frac{8t+6}{(2t+1)^4} dt = \int \frac{4}{(2t+1)^3} + \frac{2}{(2t+1)^4} dt$	M1*		Attempt to rewrite integrand as separate fractions with constant numerators	Could be informal method, or use of partial fractions (extending expected knowledge) As far as $\frac{P}{(2t+1)^3} + \frac{Q}{(2t+1)^4}$, with P and Q as constants, and no other fractions	
			A1		Obtain correct integrand		
		$\int \frac{8t+6}{(2t+1)^4} dt = -\frac{1}{(2t+1)^2} - \frac{1}{3(2t+1)^3}$	M1*		Attempt integration to obtain integral of form $\frac{a}{(2t+1)^2} + \frac{b}{(2t+1)^3}$		
			A1		Obtain fully correct integral	Allow unsimplified	
		$\left(-\frac{1}{4} - \frac{1}{24}\right) - \left(-1 - \frac{1}{3}\right)$	M1d*		Attempt use of correct limits	See guidance in main MS	
		$=\frac{25}{24}$	A1		Obtain correct area, any exact equivalent		

Question	Answer	Marks	AO	Guidance			
	Alternative method (integrating between curve and x-axis)						
	$\int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t = \int -\frac{16(2t^2 + 3t)}{(2t+1)^5} \mathrm{d}t$	M1*		Attempt integration by substitution / integration by parts on correct expression	Apply the same MS as for integrating between curve and <i>y</i> -axis		
	$\int \frac{(u+2)(4-4u)}{u^5} du$ or	A1		Obtain correct integrand	Using substitution eg $u = 2t + 1$		
	$2(2t^{2} + 3t)(2t + 1)^{-4}$ $-\int 2(4t + 3)(2t + 1)^{-4} dt$				Using integration by parts – first stage required for M1		
		M1*		Attempt integration to obtain integral of required form	Apply the same MS as for integrating between curve and <i>y</i> -axis		
	$\frac{2}{u^2} + \frac{4}{3u^3} - \frac{2}{u^4}$ or $2(2t^2 + 3t)(2t + 1)^{-4} +$	A1		Obtain fully correct integral	Allow unsimplified		
	$2(2t^{2}+3t)(2t+1)^{-4} + \frac{1}{3}(4t+3)(2t+1)^{-3} + \frac{1}{3}(2t+1)^{-2}$						
	$\left(\frac{4}{3}\right) - \left(\frac{13}{24}\right) + \frac{1}{4}$	M1d*		Attempt use of correct limits, and combine with correct area of rectangle (= $\frac{1}{4}$)	Limits must be $\int_{\frac{1}{2}}^{0}$ or commensurate <i>u</i> -limits, and used in the correct order		
					See guidance in main MS, but must also add on the correct area of the rectangle		

112 10/01			VIGIT C	dilottio	04110 202 1	
Question	Answer	Marks	AO	Guidance		
	$=\frac{25}{24}$	A1		Obtain correct area, any exact equivalent		

.