2	(i)	$(1 - (-3))^2 + (-2 - (-1))^2 + (5 - 2)^2$ (= 26)	M1	1.1a	Attempt. Allow with one sign error	$\sqrt{\text{not nec'y}}$
	~ /	Length = $\sqrt{26}$ or 5.10 or 5.1 (2 sf)	A1	1.1		2
		2	[2]			
2	(ii)	 $\begin{pmatrix} -1\\ -1.5\\ 3.5 \end{pmatrix}$	B1 [1]	1.1		
2	(iii)	$BA = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$	M1	2.1	um or quote result for <i>BA</i> from (ii) or (i)(a)	SC Incorrect, but equal, vectors <i>BA</i> & <i>PQ</i> with correct conclusion SC B1
		$\begin{array}{l} \mathbf{u}\mathbf{u}\mathbf{r}\\ PQ = \begin{pmatrix} 5\\1\\3 \end{pmatrix} - \begin{pmatrix} 1\\2\\0 \end{pmatrix} \qquad (= \begin{pmatrix} 4\\-1\\3 \end{pmatrix}) \end{array}$	M1	1.1	or similar methods with $AQ \& BP$ or AB and QP etc Allow find eg AB and PQ un un PQ or $BA = PQ$ with arrows	Allow without method SC Lengths only seen: M1M0
		BA = PQ and $BA // PQ$			or $ BA = PQ \& BP = AQ $ shown & stated or $ BA / PO \& BP = AQ $ shown & stated	Just $ BA = PQ $ A0
		and hence $ABPQ$ is a parallelogram (AG)	A1 [3]	2.2a	Both statements needed, dep M1M1	