6		DR				
6	(i)	$\frac{\ln x}{x} = 0$			May not be seen	
		$\Rightarrow \ln x = 0 \qquad \text{or } \frac{\ln 1}{1} = 0$	M1	1.1a	May be implied	
		$\Rightarrow x = 1$	A1 [2]	1.1		
6	(ii)	y-coordinates are $\frac{\ln 2}{2}$ and $\frac{\ln 4}{4}$				
		$\frac{\ln 4}{4} = \frac{2\ln 2}{4} = \frac{\ln 2}{2}$ oe	B1*	1.1	Allow $\frac{\ln 4}{4} = \ln 4^{\frac{1}{4}} = \ln \sqrt{2} = \frac{\ln 2}{2}$	Both = 0.346 B0B0
		$\Rightarrow AB$ is // to x-axis AG	B1dep*	3.1 a	Show that $\frac{\ln 4}{4} = \frac{2 \ln 2}{4}$ and conclusion	use of $\frac{\ln 4}{4} - \frac{\ln 2}{2} = 0$ unjustified B0B0
		 1	[2]			
6	(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x \times \frac{1}{x} - 1 \times \ln x}{x^2} \text{ or } \frac{1}{x} \times \frac{1}{x} + \ln x \times (-\frac{1}{x^2}) \text{ oe}$	M1	3.1 a	Attempt diff, \geq one term correct	
		$\frac{1}{x^2} - \frac{\ln x}{x^2} = 0$ or $\frac{1 - \ln x}{x^2} = 0$	M1	1.1	oe, their $\frac{dy}{dx} = 0$	
		$1 - \ln x = 0$ oe x = e or 2.72 or 2.7 (2 sf)	A1	1.1		
		Coordinates are (e, $\frac{1}{e}$)	A1	1.1	Allow (e, 0.368) or (e, 0.37)	or (2.7, 0.37) (2 sf)
			[4]			

Question		n	Answer	Mks	AO	Guidance	
6	(iv)						Example of grad method
			Attempt $\frac{d^2 y}{dx^2}$	M1	2.1	Attempt diff their $\frac{dy}{dx}$	Sub 2.7 & 2.8 in $\frac{dy}{dx}$ M1
			$= \frac{x^2(-\frac{1}{x}) - 2x(1-\ln x)}{x^4} \text{ or } \frac{-3 + 2\ln x}{x^3} \text{ oe}$	A1	1.2	All correct, not necessarily simplified cao	0.00093, -0.0038 A1A1
			Substitute $x = e$ (or 2.72) into $\frac{d^2 y}{dx^2}$	M1	1.1	Sub their x from (iii) into their $\frac{d^2 y}{dx^2}$	State grad +ve & -ve or show on diag dep A1A1 M1
			$\frac{d^2 y}{dx^2} = -\frac{1}{e^3}$ or or -0.0498	A1	1.1	cao Allow or – 0.0497 or –0.05	
			$\frac{d^2 y}{dx^2} < 0$, hence maximum	B1f	3.2a	ft their result of sub their x into their $\frac{d^2 y}{dx^2}$ dep see result	
				[5]			No proof, no marks