3	(a)	(i)	$(x-3)^2 + (y+4)^2 = 4\cos^2\theta + 4\sin^2\theta$	M1	3.1a	or $\left(\frac{x-3}{2}\right)^2 + \left(\frac{y+4}{2}\right)^2 = \cos^2\theta + \sin^2\theta$	Condone sign errors or one arith slip or missing brackets for M1
			$\Rightarrow (x-3)^2 + (y+4)^2 = 4 \text{ oe ISW}$	A1	2.1	or $\left(\frac{x-3}{2}\right)^2 + \left(\frac{y+4}{2}\right)^2 = 1$ oe	or $y = -4 + 2\sqrt{1 - (\frac{x-3}{2})^2}$ M1A1 or similar with $x =$
						or $\cos^{-1}\left(\frac{x-3}{2}\right) = \sin^{-1}\left(\frac{y+4}{2}\right)$ M1A1	or $y = -4 + 2\sin(\cos^{-1}\frac{x-3}{2})$ M1A1
				[2]		ISW for all answers	
3	(a)	(ii)	Centre (3, –4), radius 2	B1f	2.2a	ft their (i) if both consistent with (i) But if absolutely correct, not ft: B1.	
3	(b)		DR NB Allow decimals to 2 sf instead of surds thoughout, except answer to 3 sf				
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	3.1 a	Attempt diff x & y wrt t & find $\frac{dy}{dt} \div \frac{dx}{dt}$	
			$= -\frac{1}{2}\cot t \text{or} -\frac{1}{2}\frac{\cos t}{\sin t}$	A1	1.1	soi	
			$t = \frac{\pi}{6}$: $\frac{dy}{dx} = -\frac{1}{2}\cot \frac{\pi}{6}$ or $-\frac{\sqrt{3}}{2}$ or	M1	1.1	Substitute $t = \frac{\pi}{6}$ in their $\frac{dy}{dx}$	Allow sign error
			Alternative methods for gradient				
			$\left(\frac{x}{4}\right)^2 + \left(\frac{y}{2}\right)^2 = 1, \qquad \frac{x}{8} + \frac{y}{2}\frac{dy}{dx} = 0 \qquad M1$			Attempt cartesian equn & differentiation	$\frac{\mathrm{d}}{\mathrm{d}x}(0.5(16-x^2)^{-0.5})$
			$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{4y} $ A1			soi	or $\frac{dy}{dx} = \frac{1}{4}(16 - x^2)^{-0.5}(-2x)$ oe
			$t = \frac{\pi}{6}: \ \frac{dy}{dx} = -\frac{4\cos(\frac{\pi}{6})}{8\sin(\frac{\pi}{6})} \text{ or } -\frac{1}{2}\cot\frac{\pi}{6} \text{ or } -\frac{\sqrt{3}}{2} \text{ M1}$			Substitute $t = \frac{\pi}{6}$ in x (and y) & their $\frac{dy}{dx}$	

