5	(a)		An example of a correct method:			Other correct methods may be seen eg $lr = 4$: B1, find h ito $l \& r$: B1, Subst $h \& lr$ into V : M1, convincing: A1	NB Must be <u>clearly</u> using this alternative method to score any marks on this scheme.
			$l = \frac{4}{r}$ or $l = \frac{4\pi}{r\pi}$ exactly (not $lr = 4$) ($h = \sqrt{l^2 - r^2}$)	B1	3.1a	Express l correctly in terms of r May be implied	Allow $l = \frac{4-r^2}{r}$ oe B1 $(h^2 = l^2 - r^2)$
			$h = \sqrt{\frac{16}{r^2} - r^2}$ or $\frac{\sqrt{16 - r^4}}{r}$ oe	B1	1.1	Express h (or h^2) correctly in terms of r alone	or $h^2 = \frac{16}{r^2} - r^2$ or $\frac{16 - r^4}{r^2}$
			$V = \frac{1}{3}\pi r^2 \sqrt{\frac{16}{r^2} - r^2} \qquad \text{or } \frac{1}{3}\pi r^2 \frac{\sqrt{16 - r^4}}{r} \text{ oe}$	M1	1.1	Sub their <i>h</i> (in terms of <i>r</i> alone) into $\frac{1}{3}$ $\pi r^2 h$	
			$(=\frac{\pi}{3}\sqrt{16r^2-r^6}$ AG)	A1 [4]	2.1	Must see a correct previous expression in terms of r only, and the answer	
				[4]			$3V = \sqrt{16^2 - 6}$
5	(b)	DR	$\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\pi}{3}\sqrt{16r^2-r^6}\right)$	M1	1.1a	Attempt differentiate V or $\frac{V}{\pi}$ or $3V$	or $\frac{3V}{\pi}$ or $\sqrt{16r^2 - r^6}$ or $16r^2 - r^6$
			$\frac{\pi(32r-6r^5)}{3\times 2\sqrt{16r^2-r^6}} = 0 \text{oe}$	A1	2.1	Correct derivative of one of the above Condone missing brackets.	All subsequent marks can be scored even if this A1 not scored.
			(Their derivative = 0) $r = \frac{2}{\sqrt[4]{3}}$ or $\sqrt[4]{\frac{16}{3}}$ oe or 1.52 (3 sf) Allow 1.5	A1	1.1	Lose this mark if incorrect values of r also given, eg $r = \pm 2$ obtained from	
			or $r^2 = \frac{4}{\sqrt{3}}$			$(16r^2 - r^6)^{-\frac{1}{2}} = 0$	Allow without $r = 0$
			$r = -\frac{2}{\sqrt[4]{3}}$ or -1.52 invalid OR $r = 0$ invalid or $r > 0$	B1f	3.2a	Comment needed, about their negative r (ft) or about $r = 0$	
			$(V_{\rm max} = \frac{\pi}{3}\sqrt{16 \times 1.51967^2 - 1.51967^6})$				T & I: 5.20 (3sf) SC B2 5.2 (2 sf) SC B1
			Max $V = 5.20$ (3 sf) Allow 5.2 or a.r.t. 5.2	A1 [5]	1.1	Condone $V = 5.20 \text{ m}^3$	5.2 (2 51) 50 151