6		$2^{2k} - 1$ or $4^k - 1$ (where <i>k</i> is an integer > 1)	M1	3.1a	or $2^{2k+2}-1$ or $2^{2k+4}-1$ Allow $2^{2n}-1$	Induction:	
		$=(2^{k})^{2}-1$				Assume $2^k - 1$ is \div by 3 (k even)	M1
		$=(2^{k}-1)(2^{k}+1)$	A1	2.1	$=(2^{k+1}-1)(2^{k+1}+1)$ oe	Let $2^k - 1 = 3p$ (<i>p</i> integer)	
					or $(2^{k+2}-1)(2^{k+2}+1)$ oe		
		$(2^{k} + 1) > 1$ and $k > 1$, hence $(2^{k} - 1) > 1$	M1	1.1		$2^{k+2} - 1 = 4 \times 2^k - 1$	M1
		Hence $(2^k - 1)(2^k + 1)$ is the product of two				$= 4 \times 2^k - 4 + 3$	
		integers, both > 1, and hence $2^n - 1$ is not prime	A1	2.2a	Both statements needed	$=4(2^{k}-1)+3$	
						$= 4 \times 3p + 3$	A1
						which is ÷ by 3	
						When $k = 2: 2^2 - 1 = 3$ so \div by 3	A1
			[4]			Hence true for all even n. Claim tru	ıe