
5	(a)	$n^2 - 1 \text{ or } n^2 + 1 \text{ is even}$ OR n^2 is odd or $n^2 = 2k + 1$ (<i>k</i> integer) OR $\frac{n^2 - 1}{2} > 0$ or $\frac{n^2 - 1}{2} \ge 1$ oe eg $n^2 \ge 3$			B1 for <u>any</u> of these. Numerical examples insufficient Ignore extra, eg $\frac{n^2+1}{2} > 0 \Rightarrow n^2 > -1$ or $n > \sqrt{-1}$ or $n \neq -1$
		$OR \frac{n-1}{2} > 0 \text{ of } \frac{n-1}{2} \ge 1 \text{ of } eg n^2 \ge 3$	B1	2.4	Allow ≥ 0 for this mark
		Assuming <i>n</i> is a positive integer:			Not assuming <i>n</i> is a positive integer:
		$n ext{ is odd}$ oe $eg n = 2k + 1 (k ext{ integer})$	B1	2.2a	
		$n > 1$ (or $n < -1$) or $ n > 1$ or $n \ge \sqrt{3}$ Not $n \ge 0$	B1	2.2a	$n = \sqrt{\text{odd integers} > 1}$ or $n = \sqrt{3}$, $\sqrt{5}$ etc oe B2 indep
		NOT $n > \pm 1$ but ignore this if followed by correct, eg $ n > 1$			
					2nd and 3rd B1 marks are independent & can be gained without explanation
			[3]		
5	(b)	$n^2 + (\frac{n^2 - 1}{2})^2$	M1	3.1 a	$\left(\frac{n^2+1}{2}\right)^2 - \left(\frac{n^2-1}{2}\right)^2$ correct expression
		$n^{2} + \left(\frac{n^{2}-1}{2}\right)^{2}$ = $n^{2} + \frac{n^{4}-2n^{2}+1}{4} = \frac{n^{4}+2n^{2}+1}{4}$			$\left(\frac{n^2+1}{2}\right)^2 - \left(\frac{n^2-1}{2}\right)^2 \text{ correct expression}$ $= \frac{n^4+2n^2+1}{4} - \frac{n^4-2n^2+1}{4} = \frac{4n^2}{4}$
		$=\left(\frac{n^2+1}{2}\right)^2$	A1		$= n^2$ Correctly obtained
			[2]		

