8	(a)	Summary scheme		5	
-		Attempt separate variables using $(100 - P)$	M1	3.1a	
		Correct integral, but allowing		100	
		100 - P or $(P - 100)$ or $(100 - P)$	A1	1.1	Allow without $+ c$
		Attempt $t = 0$, $P = 2000$ to find c or A or $e^{\pm c}$	M1	3.4	dep M1
		$c = -\ln 1900$ or $A = 1900$ or $e^{\pm c} = 1900$			
		OR Allow $c = \ln 1900 \text{ or } -\ln(-1900)$			
		or A or $e^{\pm c} = -1900$ or $-\frac{1}{1900}$	A1	3.4	den M1M1
			M1	3.4	dep M1M1
		Attempt make P the subject Correct use of mod & change to $P - 100$	M1	2.1	dep M1M1A1
		$P = 1900e^{-t} + 100$	A1	1.1	dep M1A1M1A1M1M1 ie dep all correct working seen
		Examples of correct methods			dep with the transfer is dep an correct working seen
		$\frac{\mathrm{d}P}{100-P} = \mathrm{d}t$	3.54		
		$\overline{100-P}$ - \overline{u}	M1		
		$-\ln 100 - P = t + c$ or $ 100 - P = Ae^{-t}$	A1		
		Substitute $t = 0$, $P = 2000$	M1		
		$\Rightarrow c = -\ln 1900 \qquad \text{or } A = 1900$	A1		
		$\ln \frac{ 100 - P }{1900} = -t$ or $ 100 - P = 1900e^{-t}$			
		$\frac{P-100}{1900} = e^{-t}$			
			M1		
		$P = 1900e^{-t} + 100$	A1		
	Į Į		A1		

Question		on	Answer	Mark	AO	Guidance
8	(a)	ctd	$\frac{dP}{P-100} = -dt$ $\ln(P-100) = -t + c \text{or } P - 100 = Ae^{-t}$ Substitute $t = 0$, $P = 2000$ $\Rightarrow c = \ln 1900 \text{ correct} \text{or } A = 1900$ $\ln(P-100) = -t + \ln 1900 \text{ or } P - 100 = 1900e^{-t}$ $\frac{P-100}{1900} = e^{-t}$ $P = 1900e^{-t} + 100$	M1 A1		
			Example of incorrect methods $ \frac{dP}{100-P} = dt $ $ -\ln(100-P) = t + c or 100 - P = Ae^{-t} $ $ 100 - P = e^{-t-c} $ Substitute $t = 0, P = 2000$ $ \Rightarrow e^{-c} = -1900 or A = -1900 $ $ 100 - P = -1900e^{-t} oe $ No change to $P - 100$ $ P = 1900e^{-t} + 100$	M1 A1 M1 A1 M0 M1 A0		Correct answer but incorrectly obtained, not using modulus
			$\frac{dP}{100-P} = dt$ $\ln(100-P) = t + c$ Substitute $t = 0, P = 2000$ $\ln(-1900) = c$ $\ln(100-P) = t + \ln(-1900)$ $100 - P = -1900e^{t}$ No change to $P - 100$ $P = 100 + 1900e^{t}$	M1 A0 M1 A1 M0 M1 A0		

Question		n	Answer		Mark	AO	Guidance
8	(b)		(Starts at 2000)	Decreases Approaches 100	B1f B1f [2]	3.4 3.4	B1 for correct process or ft (a) dep (a) includes exponential B1 for correct limit or ft (a) dep (a) includes exponential

_