8	(a)	b = -1, c = 1	B1	or $(n+1)(n^2 - n + 1)$
			[1]	
8	(b)	$n + 1$ (or $n^2 - n + 1$) is a factor of K	B1	Stated. Allow x instead of n NOT n^3+1 can be expressed as $(n+1)(n^2-n+1)$
		$n > 2$ so $n + 1 > 1$ or $n + 1 > 3$ or $n + 1 \neq 1$ $(n^2 - n + 1$ is a factor of <i>K</i> and $n^2 - n + 1 > 1$ or $\neq 1$) Assume these factors are equal	B1	Must see $n > 2$ Allow omission of this step
		Let $n^2 - n + 1 = n + 1$ $\Rightarrow n^2 - 2n = 0$	M1	
		n = 0 or 2.	A1	
		n > 2 so both invalid; hence 2 distinct factors	A1	Conclusion stated, from correct working seen. Dep at least B1M1 and correct reasoning given
		Ignore attempted proofs that either factor $\neq K$		SC: $(n+1) > 1$ or $n + 1 > 3$ (or $n^2 - n + 1 > 1$) B1 $(n+1) \& (n^2 - n + 1)$ are factors of K B1
			[5]	