 Other forms for probabilities Allow eg 20\% or 1 in 5, but not odds eg 1:4

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Answer \& Mark \& AO \& Guidance \\
\hline \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{(a)} \& \multirow[t]{3}{*}{DR} \& \[
\begin{aligned}
\& \frac{x(x+2)-(x-1)(x+1)}{(x+1)(x+2)} \text { or } \frac{x^{2}+2 x-x^{2}+1}{x^{2}+3 x+2} \text { oe }(=0) \\
\& x=-\frac{1}{2}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& \[
\begin{aligned}
\& 1.1 \\
\& 1.1 \\
\& 1.1
\end{aligned}
\] \& M1 for \(x(x+2)-(x+1)(x-1)\) oe Multiply out brackets. Allow one error Ignore denominator even if " \(=0\) " NB correct with no working: SC B1 \\
\hline \& \& \& Alternative method
\[
\begin{aligned}
\& x(x+2)=(x+1)(x-1) \\
\& x^{2}+2 x=x^{2}-1 \\
\& x=-\frac{1}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& M1 for attempt "cross-multiply". Multiply out brackets. Allow one error \\
\hline \& \& \& \& [3] \& \& \\
\hline 1 \& (b) \& \& \begin{tabular}{l}
DR \\
Solve quadratic in \(\frac{1}{x^{3}}\) or \(x^{3}\) or \(u\left(=x^{3}\right.\) or \(\left.\frac{1}{x^{3}}\right)\) using any correct method.
\[
\frac{1}{x^{3}}(\text { or } u)=1 \&-\frac{1}{8} \quad \text { or } x^{3}(\text { or } u)=1 \&-8
\] \\
or correct factorisation of quadratic
\[
x=1 \& x=-2 \text { with no extras }
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
B1 \\
B1f \\
[3]
\end{tabular} \& \begin{tabular}{l}
3.1a \\
1.1 \\
1.1
\end{tabular} \& \begin{tabular}{l}
or cubic in \(x\) Condone quadratic in \(x\) with \(x=\frac{1}{x^{3}}\) or \(x=x^{3}\) \\
Must see attempt at correct method for this mark Allow arithmetical errors \\
Can be scored without M1 Condone \(x=1,-\frac{1}{8}\) or \(x=1,-8\) Ignore \(x^{3}=0\), if seen, for this mark \\
ft their \(x^{3}\) or \(\frac{1}{x^{3}} \quad\) If also \(x=0, \mathrm{~B} 0\) \\
NB correct with no working: M0B0B1
\end{tabular} \\
\hline 1 \& (c) \& \& \begin{tabular}{l}
DR \\
eg \(\left(x^{2}-7\right) \ln 3=\ln \frac{1}{243}\) or \(x^{2}-7=\log _{3}\left(\frac{1}{243}\right)\) \\
or \(3^{x^{2}-7}=3^{-5}\) or \(x^{2}-7=-5\) or \(3^{x^{2}}=3^{2}\) \(x= \pm \sqrt{2}\) or \(\pm 1.41\) (3 sf)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& 3.1a

1.1 \& | Condone incorrect or omitted brackets |
| :--- |
| Any correct step after \log (both sides) |
| or ANY correct step using indices |
| NB correct with no working or T \& I: SC B1 | \\

\hline
\end{tabular}

