Question		n	Answer	Mark	AO	Guidance
				[2]		
2	(a)		(4i + 2j - 5k) - (3i + 2j) (= i - 5k)	M1	1.1	$\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$ attempted, using \mathbf{i} , \mathbf{j} , \mathbf{k} or column vectors
			or $(3i + 2j) - (4i + 2j - 5k)$ (= $5k - i$)			May be implied by calculation seen
			$AB = \sqrt{26}$ or 5.10 (3 sf) or 5.1	A1	1.1	www. Correct answer, no working: M1A1
				[2]		Mark(s) cannot be gained retrospectively in (b)
2	(b)					
			$26' = (p-3)^2 + 4 + 9 + (p-4)^2 + 4 + 4$	M1	3.1a	Attempt $AB^2 = BP^2 + PA^2$ (involving p) ft their AB
			Alternative methods for M1			
			Attempt $ PC ^2 = (\text{their radius})^2$	M1		or $(\frac{7}{2} - p)^2 + 4 + \frac{1}{4} = \frac{13}{2}$
			Attempt $\overline{PA} \cdot \overline{PB} = 0$	M1		or $((3-p)\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \cdot ((4-p)\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = 0$
			$p^2 - 7p + 10 = 0$ oe or $(p - \frac{7}{2})^2 = \frac{9}{4}$	A1f	1.1	Correct simplified equation, ft their (a), ie:
						or $p^2 - 7p + \frac{46 - \text{their } a^2}{2} = 0$ or $(p - \frac{7}{2})^2 = \frac{\text{their } a^2 - 17}{4}$
			p = 2 or 5	A1f	1.1	ft only their (a)
				[3]		