5	(a)	$\mathbf{DR} \ \frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x + 4 = 0$	M1	3.1 a	Differentiate & equate to 0. May be implied by calc of D
		$b^2-4ac = -12$ or D= -12 or $3(x-1)^2 + 1 = 0$ oe			or $x = \frac{6 \pm \sqrt{36 - 48}}{6}$ or $x = \frac{6 \pm i\sqrt{12}}{6}$ oe
		No (real) roots			Must see justification as line above, no errors, & statement
		or no value of x, or can't $\sqrt{\text{negative}}$	A1	1.1	Other correct forms of the quadratic equation and
		or gradient always +ve.			justification may be seen.
			[2]		
	(b)	DR $\frac{d^2 y}{dx^2} = 6x - 6 = 0$	M1	1.1	Differentiate their $\frac{dy}{dx}$ and = 0. Can be implied by $x = 1$
		x = 1 gives a point of inflection	A1	2.2a	Statement " $x = 1$ gives a point of inflection" is enough.
		or $x = 1$ & show that, either side of this point, gradient does not change sign <u>or</u> second derivative does change sign	[2]		or This equation has one root. (so curve has one inflection) Not just " $x = 1$ " Ignore y-coordinate