
8	Summary method:			
	Express V in terms of h	B1	3.3	Correct substitution
	Differentiate V with respect to h	M1	3.4	NOT if $h = 50$ or $r = 50 \tan 30$ used
	Attempt chain rule, Attempt separate variables Correct integrals Substitute correct limits Answer	M1 M1 A1 M1 A1		Resulting equation must involve exactly 2 variables Their equation must involve exactly 2 variables Ignore limits Integrals must be of correct forms (see examples below) <u>Note 1</u> Candidates who substitute numerical values for <i>h</i> or <i>V</i> or <i>r</i> may be able to score the 2 nd and/or 3 rd M1 marks, but probably nothing else. See the example of this below. <u>Note 2</u> . There is a special case for candidates who use $r = h \sin 30$ (answer $\frac{625\pi}{4}$ or 491). These can score all 4 M-marks and the final A1 <u>Note 3</u> . The chain rule may be used to find_ $\frac{dV}{dt}$ or $\frac{dh}{dt}$ or $\frac{dV}{dh}$ or $\frac{dV}{dr}$ or other derivatives. Two of the example methods below illustrate use of $\frac{dV}{dt}$ and $\frac{dV}{dr}$, but use of other derivatives can also lead to correct methods.

Question		Answer	Mark	AO	Guidance
8	ctd	Example method 1			
		$V = \frac{\pi}{3} (h \tan 30^{\circ})^2 h$ or $V = \frac{\pi}{3} \left(\frac{h}{\sqrt{3}}\right)^2 h$ oe	B1	3.3	or $V = \frac{\pi}{9}h^3$ oe
		$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi}{3}h^2$	M1	3.4	Attempt differentiate their V in terms of h only NOT if $h = 50$ or $r = 50 \tan 30$ used.
		$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\pi}{3}h^2\frac{\mathrm{d}h}{\mathrm{d}t} \qquad \text{oe} \qquad \text{or } \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{3}{\pi h^2}\frac{\mathrm{d}V}{\mathrm{d}t}$	M1	2.1	Attempt use chain rule for $\frac{dV}{dt}$ or $\frac{dh}{dt}$ in terms of $t \& h$ only
		$\left(\frac{\pi}{3}h^2\frac{dh}{dt}\right) = -2h$ oe or $\frac{dh}{dt} = \frac{-6}{\pi h}$			(Set their $\frac{\mathrm{d}V}{\mathrm{d}t} = -2h$)
		$ \begin{array}{c} 0\\ \pi\int hdh = -\int 6dt \\ 50 \end{array} $ oe	M1	1.1	Attempt separate variables in their equation in terms of h and t only (not V or r). Integral signs not essential
		$\left[\frac{\pi h^2}{2}\right]_{50}^0 = \left[-6t\right]_0^t \text{ oe}$	A1	2.1	Correct integrals, any limits or none
		$-\pi \times \frac{50^2}{2} = -6t$	M1	1.1	Substitute correct limits into integrals of forms $ah^2 \& bt$
		2			OR substitute $t = 0$ & $h = 50$ to find c and substitute $h = 0$
		Time = $\frac{625\pi}{3}$ secs or 654 secs (3 sf) oe	A1	3.4	Allow without secs or 10.9 mins or 10 mins 54 secs
					or:
					SC. Use of $r = h \sin 30$ (answer $\frac{625\pi}{4}$ or 491) can score
			[7]		all 4 M-marks and final A1

8	ctd	Example method 2			the second se
		$V = \frac{\pi}{3}r^2 \frac{r}{\tan 30^{\circ}}$ or $V = \frac{\pi}{\sqrt{3}}r^3$ oe	B1		Subst $h = \frac{r}{\tan 30^{\circ}}$ into correct formula for V
		$\frac{\mathrm{d}V}{\mathrm{d}r} = \sqrt{3}\pi r^2$	M1		
		$\frac{\mathrm{d}V}{\mathrm{d}t} = \sqrt{3}\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}t} \qquad \text{oe}$	M1		Attempt use chain rule to find $\frac{dV}{dt}$ or $\frac{dr}{dt}$ in terms of t and r
		$\left(\sqrt[n]{3}\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}t} = -2r\sqrt{3} \text{ oe}\right)$			(Set their $\frac{dV}{dt} = -2r\sqrt{3}$ oe)
		$\pi \int_{\frac{50}{\sqrt{3}}}^{0} r dr = -\int_{0}^{t} 2 dt \qquad \text{oe}$	M1		Attempt separate variables in their equation in terms of r and t only (not V or h). Integral signs not essential
		$\begin{bmatrix} \frac{\pi r^2}{2} \end{bmatrix}_{\frac{50}{\sqrt{3}}}^0 = \begin{bmatrix} -2t \end{bmatrix}_0^t \text{ oe}$ $-\frac{\pi \times 50^2}{6} = -2t$	A1		Correct integrals, any limits or none
		$-\frac{\pi \times 50^2}{6} = -2t$	M1		Substitute correct limits into integrals of the form $ar^2 \& bt$
					OR substitute $t = 0$ & $r = \frac{50}{\sqrt{3}}$ to find c and substitute $r = 0$
		Time = $\frac{625\pi}{3}$ secs or 654 secs (3 sf) oe	A1	3.4	Allow without secs or 10.9 mins or 10 mins 54 secs SC. Use of $r = h \sin 30$ (answer 491) can score M4A1
			1		

8	ctd	Example method 3 (NOT using chain rule)			This method is different from the summary method above
		$V = \frac{\pi}{3}(h\tan 30^{\circ})^{2}h$ or $V = \frac{\pi}{3}\left(\frac{h}{\sqrt{3}}\right)^{2}h$ oe	B1	3.3	or $V = \frac{\pi}{9}h^3$ oe
		$h = \sqrt[3]{\frac{9V}{\pi}}$	M1		Allow $h = kV^{1/3}$
		$\frac{\mathrm{d}V}{\mathrm{d}t} = -2 \times \sqrt[3]{\frac{9V}{\pi}}$	M1		$\frac{\mathrm{d}V}{\mathrm{d}t} = -2 \times (\text{their } h \text{ in terms of } V)$
		$\sqrt[3]{\frac{\pi}{9}} \int_{\frac{\pi 50^3}{9}}^{0} V^{-1/3} \mathrm{d}V = -2[t]_{0}^{t}$	M1		Attempt separate variables in their equation in terms of V and t only (not h or r). Integral signs not essential
		$\sqrt[3]{\frac{\pi}{9}} \times \frac{3}{2} \left[V^{2/3} \right]_{\frac{\pi 50^3}{9}}^{0} = -2t$	A1		Correct integrals, any limits or none
		$ \frac{\sqrt[3]{\frac{\pi}{9}} \times \frac{3}{2} \left[V^{2/3} \right]_{\frac{\pi 50^3}{9}}^{0} = -2t} \\ -\frac{\sqrt[3]{\frac{\pi}{9}} \times \frac{3}{2} \times \left(\frac{\pi 50^3}{9} \right)^{2/3} = -2t $	M1		Substitute correct limits into integrals of forms $aV^{2/3}$ & <i>bt</i> OR substitute <i>t</i> =0 & $V = \frac{\pi 50^3}{9}$ to find <i>c</i> and substitute $V = 0$
		Time = $\frac{625\pi}{3}$ secs or 654 secs (3 sf) oe	A1		Allow without secs or 10.9 mins or 10 mins 54 secs or: SC. Use of $r = h \sin 30$ (answer $\frac{625\pi}{4}$ or 491) can score
					all 4 M-marks and final A1

