Question		Answer	Mark	AO	Guidance
4	(a)	$\frac{dy}{dx} = 2x.$ Gradient of tangent at (1, 1) is 2 Gradient of normal at (1, 1) = $-\frac{1}{2}$	M1 A1	3.1a 1.1	For correct gradient of either tangent or normal
		Equation of normal is $y - 1 = -\frac{1}{2}(x - 1)$	M1*	1.1	Using their gradient of normal and (1,1) to form an equation or $y = -\frac{1}{2}x + \frac{3}{2}$ (must find a value for c for this mark to be
		At <i>B</i> : $x^2 = -\frac{1}{2}x + \frac{3}{2}$	M1 dep*	3.1a	awarded) FT their gradient of normal (not = 2) Substituting $y = x^2$ and attempting to solve (may see quadratic in x or y)
		$2x^2 + x - 3 = 0$	A1	1.1	Correct quadratic in x or y, in any form or $4y^2 - 13y + 9 = 0$
		<i>B</i> is $(-\frac{3}{2}, \frac{9}{4})$	A1	1.1	Allow (-1.5,2.25). Accept $x=, y=$ but must see both.
4	(b)	$AB^{2} = \left(1 - \left(-\frac{3}{2}\right)\right)^{2} + \left(1 - \frac{9}{4}\right)^{2} (=\frac{125}{16})$ $OB^{2} = \left(\frac{3}{2}\right)^{2} + \left(\frac{9}{4}\right)^{2} (=\frac{117}{16})$ $OA^{2} = 2$ $\cos \alpha = \frac{\frac{117}{16} + 2 - \frac{125}{16}}{2 \times \sqrt{\frac{117}{16}} \times \sqrt{2}}$ $\cos \alpha = \frac{1}{\sqrt{26}} \text{OR} \tan \alpha = \frac{\sqrt{26-1}}{1}$ $\tan \alpha = 5$	[6] M1 M1 dep A1		or $AB = \frac{5\sqrt{5}}{4}$ or $OB = \frac{3\sqrt{13}}{4}$ or $OA = \sqrt{2}$ Attempt to find all three, squared or not (may see on diagram) Correct use of cos rule in any form, FT their <i>AB</i> , <i>OB</i> & <i>OA</i> Must be exact and come from exact working for cos α . Must see an exact intermediate step – either $\frac{1}{\sqrt{26}}$ or $\frac{\sqrt{26-1}}{1}$. Decimals used throughout can achieve max [2/3] M1M1A0 Do not penalise candidates who write down $\alpha = 78.69^{\circ}$ but the final answer must come from exact working (not BC).

Alternative method (1)		
	M1	Attempt to find $\tan \beta \& \tan \gamma$
$tan \beta = \frac{9}{4} \div \frac{3}{2} = \frac{3}{2}, tan \gamma = 1$		β and γ are the angles made by OB and OA respectively with the horizontal
		(Alternatively with angles to the vertical, $\tan \beta = \frac{2}{3}$)
3_1	M1	Correct use of $tan(180 - \theta) = -tan \theta$ and $tan(A + B)$ formula using
$\tan \alpha = -\tan \left(\beta + \gamma\right) = -\frac{\frac{3}{2}+1}{1-\frac{3}{2}\times 1}$	dep	their tan β & tan γ (or, with angles to the vertical, tan $\alpha = \frac{1+\frac{2}{3}}{1-\frac{2}{3}\times 1}$)
	A1	Must be exact and come from exact working.
= 5		Do not penalise candidates who write down $\alpha = 78.69^{\circ}$ but the final answer must come from exact working (not BC).
Alternative method (2)		
$\tan BOx = \frac{9}{4} \div (-\frac{3}{2}) = -\frac{3}{2}, \ \tan AOx = 1$		
$\tan(BOx - AOx)$	M1	Attempt find tan <i>BOx</i> & tan <i>AOx</i> and use tan($\theta - \varphi$) formula
$-\frac{3}{2}-1$	M1	Correct use of $tan(\theta - \varphi)$ using their $tan BOx \& tanAOx$
$=\frac{-\frac{3}{2}-1}{1+(-\frac{3}{2})\times 1}$	dep	
= 5	A1	Must be exact and come from exact working.
Alternative method (3)		
$\overrightarrow{OB} \cdot \overrightarrow{OA} = -\frac{3}{2} + \frac{9}{4} = \sqrt{2} \times \frac{3\sqrt{13}}{4} \cos \alpha$	M1	Attempt $\overrightarrow{OB} \cdot \overrightarrow{OA}$
$\begin{array}{c} 2 & 4 \\ 3 \end{array}$	M1	Correct dot product with exact values
$\cos \alpha = \frac{\ddot{4}}{4}$	dep	concer dot product with exact values
$\cos \alpha = \frac{\frac{3}{4}}{\sqrt{2 \times \frac{117}{16}}}$		
$\cos \alpha = \frac{1}{\sqrt{26}}$ OR $\tan \alpha = \frac{\sqrt{26-1}}{1}$	A1	Must be exact and come from exact working for $\cos \alpha$. Must see an
$\tan \alpha = 5$		exact intermediate step – either $\frac{1}{\sqrt{26}}$ or $\frac{\sqrt{26-1}}{1}$.
	[3]	 <u> </u>