Question			Answer		Mark	AO	Guidance	
7	(a)		$a^2 = 4b + 2$		M1	2.1	Setting up so that the deduction a^2 is even can be made.	
			Hence a^2 is even. Hence	ce <i>a</i> is even	A1	2.2a	www, must see both statements and a convincing, correct, argument oe (e.g. $a^2 = 2(2b + 1)$)	
			Alternative method					
			Assume that a is odd,	then a^2 is odd	M1		For setting up and stating that <i>a</i> is odd $\Rightarrow a^2$ is odd May see (not required) $a = 2n+1$, $a^2 = 2(2n^2+2n)+1$ Hence a^2 is odd	
			$4b$ is even, so $a^2 - 4b$ i Hence 2 is odd (so cor	is odd ntradiction)				
			Hence <i>a</i> is even.		A1		www, Must see both statements and a convincing, correct, argument	
					[2]			
7	(b)		Assume that $a^2 - 4b = 2$		M1	2.1	Setting up (must see assumption and use of <i>a</i> is even)	
			Let $a = 2n$, (where <i>n</i> is an integer)					
			Either of:				Substituting in $a = 2n$ and correctly reaching an equation which shows	
			$4n^2 - 4b = 2$	$4n^2 - 4b = 2$	A1	2.1	a contradiction.	
			$2n^2 - 2b = 1,$	$n^2 - b = 0.5$,			Accept the equivalent in words if clear and correct.	
							Also accept: $4n^2 - 4b$ is a multiple of 4, Hence $a^2 - 4b$ is a multiple of	
							4, which is a contradiction	
			Hence 1 is even	$n^2 - b$ is an integer				
			(Contradiction)		A1	2.2a	www, Must see both statements and a convincing, correct, argument	
			Hence $a^2 - 4b \neq 2$					

M1 A1 A1	
M1 A1 A1	
M1 A1 A1	
A1	
A1 A1	
Δ1	
	Must see both statements and a convincing, correct, argument www
M1	
A1	
A1	Must see previous two lines and a convincing, correct, argument www
M1	For setting up using part (a) and considering either case where b is
	odd or even (ignore any reference to the cases where <i>a</i> is odd as these
	are not required) May see (but not required) $a=2n$ so $a^2=4n^2$
	Condone using the same letter (e.g. <i>n</i>) in <i>a</i> and <i>b</i> for this mark only.
Al	For correctly considering both cases either algebraically or in words.
	May see (but not required) $b = 2m+1$, so $a^2 - 4b = 4(n^2 - (2m+1))$
	And $b = 2m$, so $a^2 - 4b = 4(n^2 - 2m)$
	Do not award this mark if same integer (e.g. n) used in both a and b
A1	A fully correct, convincing argument with conclusion, www.
[3]	
	M1 A1 A1 M1 A1 A1 [3]