Question			Answer	Marks	AO	Guidance
6	(a)	(i)	DR $\cos 3\theta = \cos (2\theta + \theta)$ = $(2\cos^2\theta - 1)\cos\theta - 2\sin\theta\cos\theta\sin\theta$ = $2\cos^3\theta - \cos\theta - 2(1 - \cos^2\theta)\cos\theta$ = $4\cos^3\theta - 3\cos\theta$ AG	B1 B1	1.1 1.1	Condone a small slip in early irrelevant working before substituting, but must be fully correct after this. oe in terms of θ , not 2θ May be implied by next line oe in terms of $\cos\theta$ only Must reach AG or give a conclusion (even if just 'QED') www
			Alternative 1 = $(\cos^2\theta - \sin^2\theta)\cos\theta - 2\sin\theta\cos\theta\sin\theta$ = $\cos^3\theta - (1 - \cos^2\theta)\cos\theta - 2(1 - \cos^2\theta)\cos\theta$ = $4\cos^3\theta - 3\cos\theta$ AG	B1 B1		oe in terms of θ , not 2θ May be implied by next line oe in terms of $\cos\theta$ only Must reach AG or give a conclusion (even if just 'QED') www
			Alternative 2 = $(1 - 2\sin^2\theta)\cos\theta - 2\sin\theta\cos\theta\sin\theta$ = $(1 - 2(1 - \cos^2\theta))\cos\theta - 2(1 - \cos^2\theta)\cos\theta$ = $4\cos^3\theta - 3\cos\theta$ AG	B1 B1		oe in terms of θ , not 2θ May be implied by next line oe in terms of $\cos\theta$ only Must reach AG or give a conclusion (even if just 'QED') www
6	(a)	(ii)	DR	[~]		
	` '		$\cos 3\theta = \frac{\sqrt{2}}{2}$	M1	1.1	oe
			$3\theta = 45^{\circ} \text{ or } 315^{\circ} \text{ or } 405^{\circ}$	A1	1.1	Allow A1 for two correct values of 3θ . Ignore other values. This mark is not implied by correct final answers but accept equivalent correct working e.g. a graph of $\cos 3\theta$. Accept radians for this mark only: $3\theta = \frac{\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}$
			$\theta = 15^{\circ} \text{ or } 105^{\circ} \text{ or } 135^{\circ}$	A1 [3]	1.1	cao. Ignore values outside of the range 0-180°, but do not accept radians for this mark. This mark may be given following M1A0.

Question			Answer	Marks	AO	Guidance
6	(b)	(i)	DR $4x^3 - 2\sqrt{2}x^2 - x + 2\sqrt{2}x^2 - 2x - \frac{\sqrt{2}}{2} \text{ oe}$	B1	1.1	Must see a correct multiplied out form and AG or conclusion.
			$=4x^3-3x-\frac{\sqrt{2}}{2}\text{ AG}$	[1]		
6	(b)	(ii)	\mathbf{DR} $x = -\frac{\sqrt{2}}{2}$	B1	2.1	oe, must be exact
			$x = -\frac{\sqrt{2}}{2}$ $x = \frac{\sqrt{2} + \sqrt{6}}{4}$ and $x = \frac{\sqrt{2} - \sqrt{6}}{4}$ oe	B1 [2]	1.1	May see $x = \frac{2\sqrt{2} \pm \sqrt{24}}{8}$ etc.
6	(c)		DR	[-]		
			cos 15° is a root of the equation in (b)(ii) (a)(ii): $\cos 105^{\circ} < 0$, $\cos 135^{\circ} < 0$, $\cos 15^{\circ} > 0$	B1 B1	2.4 3.2a	soi - for 'spotting' the connection. This mark can be gained regardless of their answers to (a)(ii) and (b)(ii). $x = \cos \theta$ or 3 correctly paired roots are sufficient for this mark Condone $x = \cos 15$ Justification for selecting this root (may say e.g. "cos 15 is the
			(b)(ii): $-\frac{\sqrt{2}}{2} < 0$ and $\frac{\sqrt{2} - \sqrt{6}}{4} < 0, \frac{\sqrt{2} + \sqrt{6}}{4} > 0$ $\cos 15^{\circ} = \frac{\sqrt{2} + \sqrt{6}}{4} \mathbf{AG}$			only positive root") This may be implied by matching each pair of answers correctly (but all three must be present or mentioned).
			-	[2]		