(a) (i)	Use the formula for $cos(A + B)$, and the double angle formulae, to show that	
	$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$	[2]

In this question you must show detailed reasoning.

(ii) Use this result to solve the equation
$$4\cos^3\theta - 3\cos\theta - \frac{\sqrt{2}}{2} = 0$$
 for $0^\circ \le \theta \le 180^\circ$.

[3]

(2) (1) (2) (4)
$$(\sqrt{2})(4)^2 = 2\sqrt{2}$$

(b) (i) Show that
$$\left(x + \frac{\sqrt{2}}{2}\right) \left(4x^2 - 2\sqrt{2}x - 1\right) = 4x^3 - 3x - \frac{\sqrt{2}}{2}$$
.

$$(2)$$

(ii) Hence find the exact roots of the equation
$$4x^3 - 3x - \frac{\sqrt{2}}{2} = 0$$
.

(ii) Hence find the exact roots of the equation
$$4x^3 - 3x - \frac{\sqrt{2}}{2} = 0$$
.

(ii) Hence find the exact roots of the equation
$$4x^3 - 3x - \frac{\sqrt{2}}{2} = 0$$
.

(c) Use the results from parts (a)(ii) and (b)(ii) to show that
$$\cos 15^\circ = \frac{\sqrt{2} + \sqrt{6}}{4}$$
.