where $i = 1, 2, 3, \dots 100$.	
The common difference of A is d , where d is a positive integer.	
The two progressions have the following properties.	
• $a_1 = b_{100} = 4$	
• $b_1 = a_{100}$	
(a) You are given that there is at least one value of <i>i</i> for which $b_i = 10 + a_i$.	
Show that, in this case,	
$i = \frac{101}{2} - \frac{5}{d}.$	[6]
(b) Hence show that it is impossible for the equation $b_i = 10 + a_i$ to hold unless d takes certain values, which should be stated.	n [2]

Two arithmetic progressions, A and B, each have 100 terms denoted by a_i and b_i respectively,