| where $i = 1, 2, 3, \dots 100$. | | |--|-----------------| | The common difference of A is d , where d is a positive integer. | | | The two progressions have the following properties. | | | • $a_1 = b_{100} = 4$ | | | • $b_1 = a_{100}$ | | | (a) You are given that there is at least one value of <i>i</i> for which $b_i = 10 + a_i$. | | | Show that, in this case, | | | $i = \frac{101}{2} - \frac{5}{d}.$ | [6] | | (b) Hence show that it is impossible for the equation $b_i = 10 + a_i$ to hold unless d takes certain values, which should be stated. | n
[2] | Two arithmetic progressions, A and B, each have 100 terms denoted by a_i and b_i respectively,