(i) The number of days on which Paul's train to work is late during a 450-day period is denoted by the random variable Y. Find a value of a such that $P(Y > a) \approx \frac{1}{6}$. [3]

In the expansion of $(0.15 + 0.85)^{50}$, the terms involving 0.15^r and 0.15^{r+1} are denoted by T_r and T_{r+1}

respectively. (ii) Show that $\frac{T_r}{T_{r+1}} = \frac{17(r+1)}{3(50-r)}$. [3]

(iii) The number of days on which Paul's train to work is late during a 50-day period is modelled by the

random variable X.

Find the values of r for which $P(X = r) \le P(X = r + 1)$. [4]

[2]

Hence find the most likely number of days on which the train will be late during a 50-day period.