15	(a)	DR $\frac{15}{64} \times \frac{2^2}{2!}$ oe eg $\frac{15}{64} \times \frac{4}{2}$	$(=\frac{15}{32} \mathbf{AG})$	B1	1.1	Must see this expression and result
		 		[1]		

Question		Answer	Mark	AO	Guidance
15	(b)	DR 2, 2, 5 2, 3, 4 3, 3, 3	M1	3.1a	Any two seen, with no more than 2 extra different combinations. eg 0, 4, 5 and 0, 5, 4 count as <u>one</u> extra
		$P(X_1 + X_2 + X_3 = 9) =$ $3 \times (\frac{15}{32})^2 \times \frac{5}{80} + 6 \times \frac{15}{32} \times \frac{5}{16} \times \frac{5}{32} + (\frac{5}{16})^3$ $0.0412 + 0.1373 + 0.0305$ $3 \times \frac{225}{16384} + 6 \times \frac{375}{16384} + \frac{125}{4096}$ $\frac{675}{16384} + \frac{1125}{8192} + \frac{125}{4096} \qquad (= 0.209045)$	M1 M1	2.1 2.1	 M2: ≥ 1 correct product actually seen & all three products correct M1: 1 correct product seen or all correct except omission of, or incorrect, multiple(s) or all three results or total correct, but without working
		$P(X_1 + X_2 + X_3 = 9 \text{ and at least } 1 X \text{ value} = 2)$ $= 3 \times (\frac{15}{32})^2 \times \frac{5}{80} + 6 \times \frac{15}{32} \times \frac{5}{16} \times \frac{5}{32} (= 0.178528)$ $\frac{0.178528}{0.209045}$ $= 0.854 \text{ (3 sf)} \qquad \text{or } \frac{117}{137}$	M1 M1 A1	1.1 2.1 2.2a	Allow M1 for 1 correct product or omit, or incorrect, multiple(s) or ft their probabilities from their previous calculation ÷ their attempted probs of correct events
		$P(X_1 + X_2 + X_3 = 9 \text{ and no } X \text{ value} = 2)$ $= (\frac{5}{16})^3 \qquad (= 0.030518 \text{ or } \frac{125}{4096})$ $1 - \frac{0.030518}{0.209045}$ $= 0.854 (3 \text{ sf}) \qquad \text{or } \frac{117}{137}$	M1 M1 A1 [6]		ft their P(3, 3, 3) ÷ their attempted probabilities of correct events & subtract from 1 NB $1 - (\frac{5}{16})^3$ alone scores M1

Question		n	Answer		AO	Guidance
15	(c)		P(two 2's in nine vales of X) or 0.094466 or ${}^{9}C_{2} \times (1 - \frac{15}{32})^{7} \times (\frac{15}{32})^{2}$	M1	3.1a	soi eg by ⁹ C ₂ seen
			P(two 2's in nine vales of X) × P(X = 2) or 0.094466 × $\frac{15}{32}$ or ${}^{9}C_{2}$ × $(1 - \frac{15}{32})^{7}$ × $(\frac{15}{32})^{3}$	M1	2.1	soi NB $\left(\frac{17}{32}\right)^7 \times \left(\frac{15}{32}\right)^3$ scores 0, unless multiplied by ${}^9\mathrm{C}_2$
			0.0443 (3 sf)	A1	1.1	
				[3]		