In this question you must show detailed reasoning.

$$P(X = x) = \begin{cases} \frac{15}{64} \times \frac{2^x}{x!} & x = 2, 3, 4, 5, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that $P(X = 2) = \frac{15}{32}$.

The values of three independent observations of X are denoted by X_1 , X_2 and X_3 .

equal to 2.

(b) Given that $X_1 + X_2 + X_3 = 9$, determine the probability that at least one of these three values is

[1]

[6] Freda chooses values of X at random until she has obtained X = 2 exactly three times. She then

[3]

stops. Determine the probability that she chooses exactly 10 values of X.