The probability distribution of a random variable X is modelled as follows. $P(X = x) = \begin{cases} \frac{k}{x} & x = 1, 2, 3, 4, \\ 0 & \text{otherwise,} \end{cases}$ where $$k$$ is a constant. (a) Show that $k = \frac{12}{25}$. **(b)** Show in a table the values of X and their probabilities. The values of three independent observations of X are denoted by X_1 , X_2 and X_3 . Find $P(X_1 > X_2 + X_3)$. [2] [1] [3] [5] In a game, a player notes the values of successive independent observations of X and keeps a running total. The aim of the game is to reach a total of exactly 7. Determine the probability that a total of exactly 7 is first reached on the 5th observation.