The heights, in centimetres, of a random sample of 150 plants of a certain variety were measured. 9 The results are summarised in the histogram.

One of the 150 plants is chosen at random, and its height, Xcm, is noted.

(a) Show that $P(20 \le X \le 30) = 0.147$, correct to 3 significant figures.

(b) (i)

[2]

[1]

[2]

Sam suggests that the distribution of X can be well modelled by the distribution N(40, 100).

- Give a brief justification for the choice of the parameter values 40 and 100. (ii)
- (c) Use Sam's model to find $P(20 \le X \le 30)$. [1]

Give a brief justification for the use of the normal distribution in this context.

Nina suggests a different model. She uses the midpoints of the classes to calculate estimates, m and s, for the mean and standard deviation respectively, in centimetres, of the 150 heights. She then uses the distribution $N(m, s^2)$ as her model.

- (d) Use Nina's model to find $P(20 \le X \le 30)$. [4]
- Complete the table in the Printed Answer Booklet to show the probabilities obtained (e) (i) from Sam's model and Nina's model. [2]
 - By considering the different ranges of values of X given in the table, discuss how well (ii) the two models fit the original distribution. [2]