Question		Answer	Mark	AO	Guidance
11	(a)	0.841	B1	1.2	Allow $\frac{5}{6}$ or 0.84 (2 sf) (from "rule-of-thumb")
					awrt 0.84
			[1]		
11	(b)	$\frac{45-\mu}{\sigma} = \phi^{-1}(0.8) \qquad \qquad \frac{25-\mu}{\sigma} = -\phi^{-1}(0.7)$	M1	3.1 a	One of these attempted. Or $P(Z < \frac{45-\mu}{\sigma}) = 0.8$ seen or this
					standardised form clearly shown on a diagram
		$\frac{45-\mu}{\sigma} = 0.84162$	A1	1.1	Not a required answer so allow truncated e.g. 0.841, 0.84
		$\frac{25-\mu}{\sigma} = -0.52440$	A1	1.1	Not a required answer so allow truncated e.g0.52
		$45-\mu$ 0.84162 (1.60402)	M1	2.1	dep previous M1. Attempt to solve their equations
		$\frac{45-\mu}{25-\mu} = -\frac{0.84162}{0.52440} \qquad (=-1.60492)$	dep		simultaneously, any method (may be implied by correct answers)
		$\mu \in [32.6, 32.8]$ and $\sigma \in [14.5, 14.7]$	A1	1.1	For obtaining both values in the given intervals.
		$\mu = 32.7 (3 \text{ sf})$ and $\sigma = 14.6 (3 \text{ sf})$	A1		For both μ and σ correct to 3sf BC cao
		•			$(\mu = 32.6778, \sigma = 14.6411)$
					SCB1 for either $\mu = 32.7$ (3sf) or $\sigma = 14.6$ (3sf) if neither A mark
					gained, but must be correct to 3sf. (max [5/6])
			[6]		
11	(c)	$\frac{b-10}{2} = -\frac{c-12}{3}$ $b = 18 - \frac{2}{3}c$	M1	3.1 a	oe but signs must be correct (e.g. accept $\frac{b-10}{2} = \frac{12-c}{3}$)
		$b = 18 - \frac{2}{3}c$	A1	1.1	oe but must have b as the subject
			[2]		