Question		n	Answer	Marks	AO	Guidance	
11	(a)		$\mathbf{v} = 6t^2 \mathbf{i} + (10t - 4)\mathbf{j}$	B1	1.1	At least one term reduces in power	
			$\mathbf{v} = 2.94\mathbf{i} + 3\mathbf{j}$			by 1 Substitution of $t = 0.7$, use	
			90- $\tan\left(\frac{3}{3}\right)$	M1	3.1 a	$\begin{bmatrix} \tan \left(\frac{-}{x}\right) & \tan \left(\frac{-}{x}\right) \end{bmatrix}$	For a complete method to
						obtain $90 - 45.578 = 44.4^{\circ}$ to give a 3 figure bearing	find a bearing
			-011°	A1	11		
			= 044	[3]	1.1		
11	(h .)		a 124 + 10	[J] M1	11		
11	(D)		$a = 12t \mathbf{I} + 10 \mathbf{J}$	INI I	1.1	Attempt differentiation of v	
			a = 8.4i + 10j	A1	1.1	Substitute $t = 0.7$	
			Use $\mathbf{F} = m\mathbf{a}$ and use Pythagoras	M1	3.3		
			Obtain 1.57 N	A1FT	3.4	FT their a at $t = 0.7$	
				[4]			
11	(c)		$6t^2 = 10t - 4$	M1	2.2a	Equate i and j components and solve	
						FT their v from part (i) if it leads to a	
						quadratic	
			$6t^2 - 10t + 4 = 0$ so $t = 1$ or $\frac{2}{3}$			BC	
			$\mathbf{F} = \mathbf{i}$ component always positive so both values	E1	2.3	Must include comment on why	
			e.g. I component always positive so both values			equating components is sufficient in	
						this case.	
				[2]			