Question		n	Answer	Marks	AO	Guidance	
13	(a)		Resolving vertically to the plane for Particle A	B1	1.1	Obtain $\frac{4}{5}mg$	
			$R = mg\cos\alpha = \frac{4}{5}mg$				
			Since A is in motion, $F_s = \mu R = \frac{1}{3} \left(\frac{4}{5}\right) mg = \frac{4}{15} mg$	B1	2.2a	Obtain $\frac{4}{15}mg$	
			Resolving horizontally to the plane for both particles:	M1	3.1b	Must obtain two equations in T and a	
			particles.			Particle A:	
						Attempt resolution as far as stating	
			$T - \frac{13mg}{max} = ma$			$T - F_s - mg\sin\alpha = ma$	
			15			Particle B:	
			$T - \frac{13mg}{15} = ma$ $-T + \frac{16mg}{5} = 4ma$	A1	2.1	Attempt resolution as far as stating $-T + 4mg \sin \beta = 4ma$	
				M1	1.1	Solve their simultaneous equations to	
						find <i>a</i> in terms of <i>g</i> .	
			7g	E1	2.4	AG Solution must include clear	
			$a = \frac{7g}{15}$			diagrams or explanation for F_s and	
						for horizontal resolutions.	
				[6]			
13	(b)		$\frac{7g}{30} = 2 \times \frac{7g}{15} \times s$	M1	1.1	Use $v^2 = 0^2 + 2as$	
			$s = \frac{1}{4}$	E1	2.1	AG Must include sufficient working	
			4			to justify the given answer from the	
						constant acceleration formula	
				[2]			