Question	Answer	Marks	AO	Guidance	
14	Let $F_{\rm G}$ be the frictional force at ground level and	B1	2.1	Either on a diagram or in words, B1	
	$R_{\rm G}$ the reaction			is awarded for a clear definition of	
	Let $F_{\rm W}$ be the frictional force at the wall and $R_{\rm W}$			the force variables used	
	the reaction				
	Let <i>x</i> be the distance the man can ascend before				
	the ladder slips				
	$F_G = \frac{1}{2}R_G$ and $F_W = \frac{1}{3}R_W$	B 1	3.3	Both statements required	
	Resolve horizontally and vertically:	B1	3.1b	Both resolutions required	
	$F_G = R_W$			Accept numerical value of g used	
	$R_G + F_W = 105g$				
		M1	1.1	Attempt to solve the 4 equations	
				simultaneously to obtain at least two	
				numerical values for the variables.	
				May be implied by later working	
	$F_W = 15g$	B 1	3.2a	B1 for either F_W and R_W or F_G and R_G	
	$R_W = 45g = F_G$				
	$R_G = 90g$				
	Moments about the foot of the ladder:	M1	3.3	Allow sign errors and sin/cos	Or similarly about the top of
	$35g(3.5\cos 45) + (70g\cos 45)x = 45g(7\cos 45)$			confusion	the ladder
	$\pm 15 a(7 \sin 45)$	A1	3.4	Correct statement	
	138(751175)				
	r = 4.25	A1	11	cao	
	$\lambda = \tau \cdot 2 J$	[8]	1.1		
		[0]		l	