| 10 | A body of mass 20 kg is on a rough plane inclined at angle α to the horizontal. The body is held at rest on the plane by the action of a force of magnitude P N. The force is acting up the plane in a direction parallel to a line of greatest slope of the plane. The coefficient of friction between the body and the plane is μ . | | | |----|--|--|-----| | | (a) | When $P = 100$, the body is on the point of sliding down the plane.
Show that $g \sin \alpha = g \mu \cos \alpha + 5$. | [4] | | | (b) | When P is increased to 150, the body is on the point of sliding up the plane.
Use this, and your answer to part (a), to find an expression for α in terms of g . | [3] |