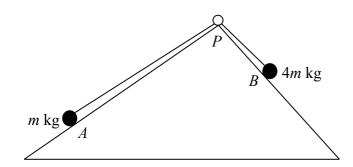
Particle A, of mass m kg, lies on the plane Π_1 inclined at an angle of $\tan^{-1} \frac{3}{4}$ to the horizontal.


Particle B, of 4m kg, lies on the plane Π_2 inclined at an angle of $\tan^{-1} \frac{4}{3}$ to the horizontal.

The particles are attached to the ends of a light inextensible string which passes over a smooth pulley at P.

The coefficient of friction between particle A and Π_1 is $\frac{1}{3}$ and plane Π_2 is smooth.

Particle A is initially held at rest such that the string is taut and lies in a line of greatest slope of each plane.

This is shown on the diagram below.

- (a) Show that when A is released it accelerates towards the pulley at $\frac{7g}{15}$ m s⁻².
- (b) Assuming that A does not reach the pulley, show that it has moved a distance of $\frac{1}{4}$ m when its speed is $\sqrt{\frac{7g}{30}}$ m s⁻¹.

[6]