Question		n	Answer	Marks	AO		Guidance	
12	(i)	(a)	$R = mg \cos 30$	B1	3.3	Е	Resolving perpendicular to the plane	
			$T = \frac{1}{4} mg$	B 1	1.1	Е	Resolving vertically for <i>B</i>	
				M1	3.3	Е	Resolving parallel to the plane – three	
							terms – allow signs and sin/cos	
			$T + F - mg\sin 30 = 0$	A1	1.1	C	confusion	
			$F = \mu(mg\cos 30)$	M1	3.3	E	Use of $F = \mu R$	
			` '	M1	2.1	A	·	
			$\frac{1}{4}mg + \mu \left(\frac{mg\sqrt{3}}{2}\right) - \frac{1}{2}mg = 0 \implies \mu = \dots$	IVII	2.1	A	Deriving equation in μ (and m and g) and attempt to solve for μ –	
			$4 \circ (2) \circ (2)$				dependent on previous M marks and	
							second B mark	
			$\mu = \frac{\sqrt{3}}{6}$	A1	2.2a	A		
			$\mu = \frac{\sqrt{6}}{6}$					
				[7]				
12	(i)	(b)	$F = mg\sin 30 - \lambda mg(>0)$	M1	3.1a	Α	Resolving parallel to the plane with	
				A 1	2.20	A	λmg	
			$F > 0 \Rightarrow \lambda < \frac{1}{2}$	A1 [2]	2.2a	Α		
12	(ii)		L	M1	3.3	С	N, II parallel to the plane – four terms	Allow a
12	(11)		$T - F - mg\sin 30 = m\left(\frac{1}{4}g\right)$					
			$2mg - T = 2m\left(\frac{1}{4}g\right)$	B 1	3.3	C	N, II for B	Allow a
			$2mg - F - mg\sin 30 = \frac{3}{4}mg$	A1	1.1	С	Correct method for eliminating <i>T</i>	
			7					
			$2mg - \mu(mg\cos 30) - mg\sin 30 = \frac{3}{4}mg$	A1	2.1	A	Correct use of $F = \mu R$ and	
			_	A 4		_	$R = mg\cos 30$	
			$\mu = \frac{\sqrt{3}}{2}$	A1 [5]	2.2a	A		
			2	[2]				