
One end of a light inextensible string is attached to a particle A of mass $m \log A$. The other end of the string is attached to a second particle B of mass $Am \log A$, where A is a constant. Particle A is in contact with a rough plane inclined at 30° to the horizontal. The string is taut and passes over a small smooth pulley P at the top of the plane. The part of the string from A to P is parallel to a line of greatest slope of the plane. The particle B hangs freely below P (see diagram).

The coefficient of friction between A and the plane is μ .

- (i) It is given that A is on the point of moving down the plane.
 - (a) Find the exact value of μ when $\lambda = \frac{1}{4}$.
 - (b) Show that the value of λ must be less than $\frac{1}{2}$. [2]

[5]

(ii) Given instead that $\lambda = 2$ and that the acceleration of A is $\frac{1}{4}g$ m s⁻², find the exact value of μ .