
					At least two terms differentiated correctly	
10	(a)		M1*	3.1b	(but not for e.g. $\mathbf{a} = (pt - 3)\mathbf{i} + (8 + qt^{-1})\mathbf{j}$	
					which is just dividing each term in t by t)	
		$\mathbf{a} = (2pt - 3)\mathbf{i} + 8\mathbf{j}$	A1	1.1	Allow stated as a column vector	A0 if + c
		$(\mathbf{F} =) m\sqrt{(2pt-3)^2 + 8^2}$ Or $(\mathbf{F} ^2 =) m^2 \{(2pt-3)^2 + 8^2\}$	M1dep*		Correct use of $ \mathbf{F} = m \mathbf{a} $ with their \mathbf{a} – allow in terms of m (and with or without $t = 0.5$ substituted) – must multiply both terms by m	M0 if $m = 1$ implied
		$(p-3)^2 + 64 = 100 \text{ or } (2p-6)^2 + 16^2 = 400$	A1		A correct equation in p only $eg \ 20 = 2\sqrt{(2p(0.5)-3)^2 + 64}$	Allow unsimplified
			M1dep*	1.1	Attempt to solve their 3TQ in p (see 5(b) for awarding this M mark if working shown). If no method seen this mark can be implied by either the correct value of p or both 9 and -3 seen. As this part is not DR then the correct real roots of their 3TQ (with or without working) or their negative root of their 3TQ (with or without working) can score this mark	Dependent on both previous M marks
		p = -3 only	A1	2.2a	Do not award this mark if $p = 9$ is also stated without being rejected	
			[6]			
10	(b)		M1*	3.1b	At least two terms integrated correctly	
		$\mathbf{s} = \left(\frac{1}{3}pt^3 - \frac{3}{2}t^2\right)\mathbf{i} + \left(4t^2 + qt\right)\mathbf{j} + \mathbf{c}$	A1ft	1.1	Condone lack of $+ \mathbf{c}$ and allow in terms of p or their value for p found/stated in (a)	Allow unsimplified
		$t = 0$, $\mathbf{s} = 2\mathbf{i} - 3\mathbf{j} \Rightarrow \mathbf{c} = 2\mathbf{i} - 3\mathbf{j}$	M1dep*	3.4	Using correct initial conditions to find c	
		$\mathbf{s} = \left(-t^3 - \frac{3}{2}t^2 + 2\right)\mathbf{i} + \left(4t^2 + qt - 3\right)\mathbf{j}$	A1	1.1	cao (oe)	Accept any vector form
			[4]			

