11	(a)	Dist. from <i>A</i> to the wall along the ladder: $(l =) \frac{h}{\sin 30}$	B1	3.1 a		(l=)2h
			M1	3.3	Moments about A (each term must therefore by a force \times distance) – three terms, both weights resolved (but allow sin/cos confusion), allow sign errors (M0 if only using masses)	M0 if the contact force at the wall appears as a component in their equation
		$2mgd\cos 30 + mga\cos 30 = R_w l$	A1	1.1	Correct LHS and RHS with their $l = \alpha h$ - A0 if $l = 2a$	$\alpha \neq 0, 1$
		$R_{w} = \frac{1}{2h} \left(2mgd \frac{\sqrt{3}}{2} + mga \frac{\sqrt{3}}{2} \right) = \frac{1}{4h} \left(2mgd + mga \right) \sqrt{3}$ $R_{w} = \frac{mg(a+2d)\sqrt{3}}{4h}$	A1	2.2a	AG www – note that using $l = 2a$ but then stating $a = h$ is M1 only	Enough working must be shown as AG
			[4]			
11	(b)		M1*	22	Resolve vertically (three or four terms (if both weights not combined)) – reaction at the wall resolved – allow sign errors and sin/cos confusion (must be using mg not m)	R_A is the normal contact force at A
		$R_w \cos 30 + R_A = 2mg + mg$	A1	1.1	oe	
			M1*		Resolve horizontally (allow sin/cos confusion) – two terms only	F_A is the frictional contact force at A
		$F_A = R_w \sin 30$	A1	1.1	oe	
		$R_w \sin 30 = \frac{\sqrt{3}}{8} \left(3mg - R_w \cos 30 \right)$	M1dep*	3.4	Use of $F = \frac{\sqrt{3}}{8}R$ with their expressions for F_A and R_A – dependent on previous M marks	Either in terms of R_w , <i>m</i> and <i>g</i> or <i>a</i> , <i>d</i> and <i>h</i> (and <i>m</i> , <i>g</i>)
		$\frac{mg(a+2d)\sqrt{3}}{8h} = \frac{\sqrt{3}}{8} \left[3mg - \frac{3mg(a+2d)}{8h} \right]$	A1	3.4	Correct equation in terms of $(m, g) a, d$ and h	Condone non-exact values for this A mark
		$h = \frac{11}{24}(a+2d)$	A1	2.2a	$k = \frac{11}{24}$ oe www (must be exact value of <i>k</i>)	From exact working
			[7]		For reference: $k = 0.45833$	

11	(c)	$\frac{11}{24}(a+2d) \le a$	M1	3.1b	Uses the condition that <i>h</i> cannot exceed $2a\sin 30 (= a) - $ allow if in terms of <i>k</i> or their incorrect <i>k</i> (e.g. $k(a+2d) = a$ is M1)	Allow any inequality sign or equals
		$d \le \frac{13}{22}a$ so greatest possible value of <i>d</i> is $\frac{13}{22}a$	A1	2.2a	Allow $d \le \frac{13}{22}a$ or $d = \frac{13}{22}a$	A0 if exact answer not seen
			[2]			
11	(d)	e.g. model the ladder as non-uniform e.g. include a frictional component for the contact of the ladder with the wall e.g. consider the size of the object at <i>C</i> e.g. consider the thickness of the ladder e.g. consider the fact that the ladder could bend	B1		B0 if suggestion is to model the ground as smooth B0 for using a more accurate value for g	
			[1]			