8	A car is travelling on a straight horizontal road. The velocity of the car, $v \text{ms}^{-1}$, at time t seconds it travels past three points, P , Q and R , is modelled by the equation	as
	$v = at^2 + bt + c,$	
	where a , b and c are constants.	
	The car passes P at time $t = 0$ with velocity $8 \mathrm{m s}^{-1}$.	
	(a) State the value of c .	[1]
	The car passes Q at time $t = 5$ and at that instant its deceleration is $0.12 \mathrm{ms^{-2}}$. The car passes R time $t = 18$ with velocity $2.96 \mathrm{ms^{-1}}$.	at
	(b) Determine the values of a and b .	[4]
	(c) Find, to the nearest metre, the distance between points P and R .	[2]