| 8 | A car is travelling on a straight horizontal road. The velocity of the car, $v \text{ms}^{-1}$, at time t seconds it travels past three points, P , Q and R , is modelled by the equation | as | |---|---|-----| | | $v = at^2 + bt + c,$ | | | | where a , b and c are constants. | | | | The car passes P at time $t = 0$ with velocity $8 \mathrm{m s}^{-1}$. | | | | (a) State the value of c . | [1] | | | The car passes Q at time $t = 5$ and at that instant its deceleration is $0.12 \mathrm{ms^{-2}}$. The car passes R time $t = 18$ with velocity $2.96 \mathrm{ms^{-1}}$. | at | | | (b) Determine the values of a and b . | [4] | | | (c) Find, to the nearest metre, the distance between points P and R . | [2] |