Question		on	Answer	Marks	AO	Guidance	
13	(a)		$\mathbf{F} = (4t-8)\mathbf{i} + 6((2t-1)^2 - 9)\mathbf{j}$	M1	3.1b	Combines given forces and considers either component equal to zero – allow M1 for either $4t - 8 = 0$ or for $6(2t - 1)^2 - 54 = 0$	
			When $t = 2$, the forces are in equilibrium	A1	1.1	t = 2 only – need only consider i or j component but any contradictory working/answers scores A0	
				[2]			
13	(b)		$m = 2 \Longrightarrow \mathbf{a} = (2t - 4)\mathbf{i} + 3((2t - 1)^2 - 9)\mathbf{j}$	B1	3.3	Using $\mathbf{F} = 2\mathbf{a}$ correctly	Allow $2\mathbf{a} = \dots$
				M1*	3.1b	Attempt to integrate a (or F) wrt t – two of their terms integrated correctly	M0 if only considering one force or one component for a or F
			$\mathbf{v} = \left(t^2 - 4t\right)\mathbf{i} + 3\left(\frac{1}{6}\left(2t - 1\right)^3 - 9t\right)\mathbf{j}(+\mathbf{c})$	A1	1.1	Condone no + c for this mark $\mathbf{v} = (t^2 - 4t)\mathbf{i} + (4t^3 - 6t^2 - 24t)\mathbf{j}$ (oe)	Allow $2\mathbf{v} = \dots$
			$t = 0, \mathbf{v} = 0 \Longrightarrow \mathbf{c} = \frac{1}{2}\mathbf{j}$	M1dep*	3.4	Uses correct initial conditions to find \mathbf{c} (or $\mathbf{c} = 0$ if expanded version used)	
			Moving parallel to $\mathbf{j} \Rightarrow \mathbf{i} = 0$ therefore $t(t-4) = 0$	M1	3. 1a	Sets i -component of v equal to 0 to obtain a quadratic equation in t	Dependent on first M mark
			$t = 4 \Longrightarrow \mathbf{v} = 64 \ (\mathrm{m s}^{-1})$	A1	2.2a	Must have found $+\mathbf{c}$ for this mark	
				[6]			

Question		on	Answer	Marks	AO	Guidance	
13	(c)			M1*	1.1	Attempt to integrate v wrt t – two of their terms integrated correctly – dependent on first M mark in (b)	no vector constant of integration required in (c)
			$\mathbf{r} = \left(\frac{1}{3}t^3 - 2t^2\right)\mathbf{i} + 3\left(\frac{1}{48}(2t-1)^4 - \frac{9}{2}t^2 + \frac{1}{6}t\right)\mathbf{j}$	A1	1.1	$\mathbf{r} = (\frac{1}{3}t^3 - 2t^2)\mathbf{i} + (t^4 - 2t^3 - 12t^2)\mathbf{j}$	
			$t = 0 \Rightarrow \mathbf{r} = \frac{1}{16} \mathbf{j}, \ t = 3 \Rightarrow \mathbf{r} = -9\mathbf{i} - \frac{1295}{16} \mathbf{j}$	M1dep*	1.1	Attempt to find r at both $t = 0$ and $t = 3$	
			Dist. = $\sqrt{\left(-9\right)^2 + \left(-\frac{1295}{16} - \frac{1}{16}\right)^2}$	M1	1.1	Correct expression for the distance between given times (dependent on both previous M marks)	
			81.5 (m)	A1	2.2a	(For reference: 81.49846624)	$\sqrt{6642} = 9\sqrt{82}$
				[5]			
1	1	1					