10	(a)	3g - 16.8 = 3a $a = \frac{3g - 16.8}{3} = 4.2 (\mathrm{ms}^{-2})$	M1 A1 [2]	3.3 1.1	N2L for Q – correct number of terms with the correct mass. Condone sign errors	M0 if using $3g$ for the mass but allow g missing from the net force
10	(b)	$16.8 - F_P = 2.5(4.2)$	M1*	3.3	N2L for <i>P</i> horizontally using $T = 16.8$ and their <i>a</i> (but not ± 9.8) from (a) – allow sign errors but must have correct number of terms and correct mass (¹ 3) – if correct $F_P = 6.3$	F_P is the friction between <i>P</i> and <i>B</i>
		$16.8 - 2.5(4.2) = \mu (2.5g)$	M1dep*	3.4	Use of $F = \mu R$ for P with $R = 2.5g$	
		$\mu = 0.257$	A1	1.1	awrt 0.257 – condone working with F , μR provided that the value of μ is explicitly stated (and not left in an inequality)	0.257142857 allow $\frac{9}{35}$
			[3]			
10	(c)	$R_B = 2.5g + Mg$	M1*	3.1b	Resolving vertically for B – correct number of terms, allow sign errors and condone g's missing	Where <i>M</i> is the mass of <i>B</i>
		$6.3_{m} \frac{5}{49} (2.5g + Mg)$	M1dep*	3.4	Use of $F_{,\mu} \mu R$ or $F = \mu R$ with correct <i>R</i> and $\mu = \frac{5}{49}$ with <i>F</i> being their F_p from (b) where F_p^{-1} 16.8	No g's missing for this mark
		$M \dots 3.8$ so least possible value for the mass of B is 3.8 (kg)	A1	2.2a	3.8 - allow use of '=' throughout this part	No justification required
			[3]			