12	(a)	$\mathbf{v} = (1-2t)\mathbf{i} + (2t^2 + t - 13)\mathbf{j}$ If <i>P</i> is stationary, then $1-2t = 0$ and $2t^2 + t - 13 = 0$	M1	3.1b	Considers either the i or j component equal to zero or forms a five-term quartic equation for $ \mathbf{v} ^2 = 0$ (oe) $(4t^4 + 4t^3 - 47t^2 - 30t + 170 = 0)$	
		i :1-2t = 0 ⇒ t = $\frac{1}{2}$ j :2t ² + t - 13 = 0 ⇒ t = 2.3117, -2.8117 No value of t is common to both components, so P is never stationary	A1 [2]	2.2a	BC – need not see the negative value of t or for substituting $t = 0.5$ into quadratic expression for j and showing this gives a non-zero answer (oe) with correct working and conclusion	 A1 for the correct quartic equation with roots stated as 2.3 ± 0.35i, 2.8 ± 0.65i + correct conclusion
12	(b)	$\Rightarrow \mathbf{a} = -2\mathbf{i} + (4t+1)\mathbf{j} \ (\mathrm{m \ s}^{-2})$	B1 [1]	1.1	Correct derivative – or as a column vector	Brackets must be around the $4t + 1$

12	(c)	$-2(2t^{2}+t-13) = 1(1-2t)$	M1*	3.1b	Setting up a quadratic equation in t only – allow sign errors (including on the 1 and 2) and the 1 and –2 on the wrong side	Or multiples of 1 and -2
		$4t^2 - 25 = 0 \implies t = 2.5$	M1dep*	1.1	Solves their (two or three term) quadratic and selects their positive value of t	Check unsupported solutions if incorrect quadratic equation
		$\mathbf{F} = m\mathbf{a} \Longrightarrow \mathbf{F} = 0.5 \left\{ -2\mathbf{i} + (4t+1)\mathbf{j} \right\}$	M1*	3.4	Substitute their a into $\mathbf{F} = 0.5\mathbf{a}$ or their $ \mathbf{a} $ into $ \mathbf{F} = 0.5 \mathbf{a} $. If F not stated in terms of <i>t</i> then one component must be correct following through from their a (and possibly <i>t</i>)	Must use correct value of 0.5 for m but can be in terms of t
		$ \mathbf{F} = \sqrt{\left(-1\right)^2 + 5.5^2}$	M1dep*	1.1	Dependent on previous \mathbf{M} mark only	From a value of $t > 0$
		$\left \mathbf{F}\right = 5.59 (\mathbf{N})$	A1 [5]	1.1	awrt 5.59 (exact: $\frac{5\sqrt{5}}{2}$)	5.590169

12	(d)	$\mathbf{s} = \left(t - t^2\right)\mathbf{i} + \left(\frac{2}{3}t^3 + \frac{1}{2}t^2 - 13t\right)\mathbf{j}(+\mathbf{c})$	M1*	1.1	Integrates v wrt t – at least three terms correct	Allow without + c
		$t = 1, \mathbf{s} = \frac{1}{6} \mathbf{j} \Longrightarrow \mathbf{c} = (0\mathbf{i} +)12\mathbf{j}$	A1	3.4	Uses given conditions to find correct \mathbf{c} – dependent on a completely correct integrated expression for \mathbf{s}	www
		When $t = 1.5$, $\mathbf{s} = -\frac{3}{4}\mathbf{i} - \frac{33}{8}\mathbf{j}$	M1dep*	1.1	Substitute $t = 1.5$ into their s	
		$tan^{-1}\left(\frac{\pm 3/4}{\pm 33/8}\right)$ or $tan^{-1}\left(\frac{\pm 33/8}{\pm 3/4}\right)$	M1	3.1b	Attempt to find a relevant angle using the components of their \mathbf{s} (allow use of sin/cos with the magnitude of \mathbf{s})	Dependent on both previous M marks. Written in terms of arctan is sufficient
		Bearing = $180 + \tan^{-1}\left(\frac{3/4}{33/8}\right) = 190^{\circ}$	A1	3.2 a	awrt 190 (or from 270 – $tan^{-1}\left(\frac{33/8}{3/4}\right)$)	190.3048465
			[5]			