13	(a)		x = Ut $y = Vt - \frac{1}{2}gt^{2}$	M1*	3.3	Setting up expressions for x and y using $s = ut + \frac{1}{2}at^2$ with $a = 0$ in x and $\pm g$ in y oe. M0 if using U instead of V vertically	Allow sign errors. May use $t = x / U$ in $y = Vt + \frac{1}{2}at^2$
			$y = V\left(\frac{x}{U}\right) - \frac{1}{2}g\left(\frac{x}{U}\right)^2$	M1dep*	3.4	Eliminating both <i>t</i> terms in <i>y</i> to get an equation in <i>y</i> , <i>x</i> , <i>U</i> , <i>V</i> (and possibly g)	
			$y = \frac{Vx}{U} - \frac{gx^2}{2U^2} \Longrightarrow 2U^2 y = 2UVx - gx^2$	A1	2.2a	AG so sufficient working must be shown	www
				[3]			
13	(b)		<i>B</i> passes through $\left(a, \frac{1}{2}a\right) \Rightarrow 2U^{2}\left(\frac{a}{2}\right) = 2UVa - ga^{2}$ $\left(\Rightarrow U^{2} = 2UV - ga\right)$	B1	3.4	Substituting $(a, \frac{1}{2}a)$ into given result from (a)	
			B passes through $(4a, 0) \Rightarrow 2UV(4a) - g(4a)^2 = 0$ $(\Rightarrow UV - 2ga = 0)$	B1	3.1b	Substituting $(4a, 0)$ into given result from (a) – note that using $(3a, 0)$ is not a MR	
			$U = \sqrt{3ga}, V = \frac{2\sqrt{ga}}{\sqrt{3}}$ or $2U = 3V$	M1*	2.1	Solve simultaneously (oe) to find either U or V (or their squares) in terms of a and g only, or for a linear equation (oe) in V and U only, if correct $2U = 3V$	oe e.g., if correct $V^2 = \frac{4}{3}ga$ and $U^2 = 3ga$
			$\tan \theta = \frac{V}{U} \Longrightarrow \tan \theta = \frac{\frac{2}{\sqrt{3}} \left(\sqrt{ga}\right)}{\sqrt{3ga}}$	M1dep*	3.1b	Using $\tan \theta = \frac{V}{U}$ with their U and their V	
			$\tan \theta = \frac{2}{3} \Longrightarrow \theta = 33.7^{\circ} (3 \text{ sf})$	A1 [5]	2.2a	awrt 33.7 (an answer of 36.9 from using (3 <i>a</i> ,0) scores (if from correct working) B1 B0 M1 M1 A0)	
				L~J			

13	(c)	$\sqrt{3ga + \frac{4}{3}ga} = 54.6$	M1	3.4	Using $\sqrt{U^2 + V^2} = 54.6$ to set up an equation in <i>a</i> (and possibly <i>g</i>)	
		a = 70.2	A1 [2]	1.1	www awrt 70.2	an answer of 97.344 (awrt 97.3) from using (3 <i>a</i> , 0) in (b) scores M1 A0
-		Alternative 1				
		$54.6\cos(33.7) = \sqrt{3ga}$ or $54.6\sin(33.7) = \sqrt{\frac{4}{3}ga}$	M1		Setting either the horizontal component equal to their $U(\text{from } (\mathbf{b}))$ or the vertical component equal to their $V(\text{from } (\mathbf{b}))$. Allow sin/cos confusion	M0 for an unsupported value of θ (if used)
		a = 70.2	A1		www awrt 70.2	1
24			[2]	1		
		Alternative 2				
		$a = \frac{UV}{2g} = \frac{54.6\cos(33.7) \cdot 54.6\sin(33.7)}{2g}$	M1		Using their expression for <i>a</i> (possibly seen in (b)) in terms of <i>U</i> and <i>V</i> with 54.6 and their θ . M0 for an unsupported value of θ	Allow sin/cos confusion
1-1		a = 70.2	A1		www awrt 70.2	
			[2]			

13	(d)	$0 = V^2 - 2gH\left(\Rightarrow H = \frac{V^2}{2g}\right)$	M1*	3.3	Setting up the model using $v^2 = u^2 + 2as$ with $v = 0$ and $a = -g$	<i>H</i> is the maximum height of <i>B</i>
		$H = \frac{1}{2g} \left(\frac{4ga}{3} \right) = \frac{2}{3}a$	M1dep*	3.4	Using their expression for V from (b) to get an expression for H in terms of a (oe) e.g., $H = \frac{V^2}{2g}$ where $V = 54.6 \sin \theta$	M0 for an unsupported value of θ
		$H = \frac{2}{3}(70.2) = 46.8 (\mathrm{m})$	A1 [3]	2.2a	(allow $\cos \theta$) with their value of θ awrt 46.8	an answer of 54.756 (awrt 54.8) from using (3 <i>a</i> , 0) in (b) scores M1M1A0
		Alternative 1				
		$0 = V - gt \triangleright t = \frac{54.6 \sin(33.7)}{g}$	M1*		Find t at maximum height with $v = 0$, $a = -g$ and $u =$ their V^1 54.6 (allow sin/cos confusion). M0 for an unsupported value of θ	<i>t</i> = 3.090472522
		$H = (54.6\sin(33.7))t - \frac{1}{2}gt^{2}$ = (54.6sin(33.7))(3.09) - $\frac{1}{2}g(3.09)^{2}$	M1dep*		Substituting their <i>t</i> into $s = Vt - \frac{1}{2}gt^2$	V ¹ 54.6 (allow sin/cos confusion)
	1.1.1	H = 46.8 (m)	A1	3	awrt 46.8	
1			[3]			
		Alternative 2				
		$x = 2a \triangleright 2U^2 y = 4UVa - 4ga^2$	M1*		Setting $x = 2a$ or 1.5a and substituting into path equation from (a)	
		$2(54.6\cos(33.7))^2 H =$ 4(54.6\cos(33.7))(54.6\sin(33.7))(70.2) - 4g(70.2)^2	M1dep*		Substituting their U, V and a to form an equation in H (and possibly g) only. M0 for an unsupported value of θ	U and V ¹ 54.6 (allow sin/cos confusion)
		H = 46.8 (m)	A1		awrt 46.8	1
			[3]			

13	(e)	 examples of possible refinements include taking into account the size of B taking into account that B is not a particle taking into account the spin of B taking into account the dimensions of B taking into account the wind/weather taking into account the thickness of the wall (which is assumed to be 'thin') taking into account the clearance of the ball at the top of the wall 	B1	3.5c	 Allow any correct refinement, including use of a more accurate value of <i>g</i> rather than the assumed 9.8 B0 if referring to the mass or weight or shape of <i>B</i> the ground is unlikely to be horizontal modelling the problem as three dimensional rather than two dimensional (unless specific detail given) air resistance (only)
			[1]		If multiple refinements given, then all must be valid to score B1